EPM 15289

HAWKWOOD PROJECT ANNUAL REPORT

REPORTING PERIOD:

May 15, 2008 to May 14, 2009

Paul Joyce
Rugby Mining Pty Limited
June 2009

RUGBY MINING PTY LTD

ABN 35 128 324 103

Suite 701, Level 7 121 Walker St North Sydney NSW 2060

Phone (612) 8920 1525 Fax (612) 8920 1356

Table of Contents

1.	Summary	4
2.	Tenure Information	6
2.1.	Blocks and sub-blocks	6
3.	Philosophy and objectives of the exploration program	8
3.1.	Geological Setting	8
3.2.	Production/Exploration History	8
3.3.	Proposed Exploration Program	8
4.	Location and Access	8
5.	Physiography & Vegetation	9
6.	Exploration Rationale	
7.	Geological Data	11
7.1.	Regional Geology	11
7.2.	Local Geology	11
7.3.	Property Geology	13
8.	Deposit Type	13
9.	Mineralisation	14
9.1.	Walkers Road & Hawkwood Copper Prospects	14
9.2.	Hawkwood Iron Prospect	15
9.3.	Surrounding Rock Types	16
9.4.	Regolith and Weathering Profile	16
9.5.	Geological Controls	16
10.	Exploration Program	16
10.1.	Previous Exploration	16
10.2.	Historical Estimates	17
10.3.	Previous Mining	17
11.	Work Conducted and Recommendations	18
11.1.	Geophysics	18
11.1.1.	Processing by Geolmage	19
11.1.2.	Aeromagnetic Interpretation	27
11.2.	Geochemistry	29
11.2.1.	Rockchip Sampling	29
11.2.2.	Bedrock Auger Sampling	32
12.	Proposed activities	33
13.	Significant mineralization identified and related geological or structura	al
feature	es	33
1/	Poforoncos	3/

Figure 1 Regional Project Location	5
Figure 2 Tenure Plan EPM 15289	7
Figure 3 Project Location	9
Figure 4: Hawkwood landscape (looking north)	10
Figure 5 Regional Geology	11
Figure 6: Local and property geology	12
Figure 7: Prospect Location	14
Figure 8: Hawkwood iron prospect aeromagnetics	15
Figure 9: Hawkwood Project basement geology	19
Figure 10: Hawkwood Magnetics	21
Figure 11: Hawkwood Magnetics (Greyscale RTP maximum gradient)	22
Figure 12: Hawkwood Magnetics (Coloured RTP maximum gradient)	23
Figure 13: Hawkwood Magnetics (vd2 – Greyscale VD2 of mag)	24
Figure 14: Hawkwood Magnetics	25
Figure 15: Hawkwood Magnetics (Greyscale VD1 of RTP)	26
Figure 16: Preliminary TMI image	27
Figure 17: Magnetic interpretation	27
Figure 18: Prospects and sample traverse	29
Figure 19: Sampling Magnetite-rich outcrops at the Hawkwood Prospect	30
Figure 20: Rockchip sample locations and Fe(%) assay results	31
Figure 21: Bedrock Auger Sampling (Dingo mechanical auger drill)	32
Figure 22: Magnetic Susceptibility Measurement	32
Figure 23: Bedrock Auger Geochemistry – Cu ppm	33
Table 1 - Tenure Information	6
Table 2 – Tenure details	6
Table 3 Historical mineral resource estimates	17

Appendix 1 – Rockchip Assays

Appendix 2 – Bedrock Auger Geochemistry

1. Summary

The Hawkwood Project is located approximately 50km southwest of Mundubbera, in southeast Queensland. Mundubbera is a small agricultural centre servicing the region. Rugby Mining's' EPM 15289 covers an area of approximately 80 square kilometres, which is prospective for intrusive related gold deposits and porphyry copper type mineralization.

Hawkwood is situated within the Rawbelle Batholith in the northern New England Fold Belt. Lithologies of major interest include the Delubra gabbro and the Hawkwood gabbro. Both are characterised by a primary magmatic mineralogical layering and geochemical studies have shown a relationship between magnetite content, Cu and PGE mineralisation and sulphidation.

The mineral deposit type to be explored for at Hawkwood is a copper-rich variant of a Skaergaard-type layered mafic complex. Past exploration has shown that copper mineralisation is associated with layered magnetite rich cumulates within an olivine ferrigabbro. Chalcopyrite and haematite are the principal copper sulphide and oxide minerals which appear to occur in association with elevated Pt, Pd and Au values and possibly spatially related to acid dykes.

Historical exploration at Hawkwood has also identified iron (+/- titanium and vanadium) mineralisation within the magnetite rich cumulates with several historical estimates providing an indication of the potential. These estimates range in size up to 500 million tonnes at grades between 19% Fe and 25% Fe, however the mineral resource categories applied to these historical estimates remains unclear and do not comply with JORC.

Work during the period included:

- A review of previous exploration
- Interpretation of Government and open file airborne geophysical data
- Bedrock sampling on the Hawkwood Grid, where a total of 119 bedrock auger holes were drilled on 200m x 200m spaced intervals. This program defined a >500pppm copper geochemical anomaly over an area of 200m x1,200m, with a maximum assay of 1,850ppm copper.
- A reconnaissance program along existing roads and tracks was also conducted to locate outcropping iron mineralization within highly magnetic aeromagnetic anomalies identified by previous aeromagnetic surveys. A total of 9rockchip samples were collected of iron mineralization and assays ranged from 26.0% to 52.1% iron.

Figure 1 Regional Project Location

2. Tenure Information

Tenement	EPM 15289
Holders	Rugby Mining Pty Limited
Term	5 years
Date Granted	15-May-2006
Date Expires	14-May 2009 – Renewal application lodged
Joint Venture	Rugby Mining Limited can earn 60% interest in
Arrangements	EPM 15289
Other	Newcrest Operations Limited holds a 2% net smelter royalty on production

Table 1 - Tenure Information

2.1. Blocks and sub-blocks

BLOCK- BRIS	SUB-BLOCKS
1378	CD
1450	YZ
1451	FGLMVWXYZ
1522	EQRSVWY
1523	ABCDFGHJLMNOPQRSTUVWXYZ
1594	BCD
1595	C D E Total = 49

Table 2 – Tenure details

Figure 2 Tenure Plan EPM 15289

3. Philosophy and objectives of the exploration program

The main mineralised zones of interest to Rugby within Hawkwood are known as the Walkers Road prospect and Hawkwood copper and iron prospects, which are situated in the southeast corner of Hawkwood within EPM 15289.

3.1. Geological Setting

Hawkwood is situated within the Rawbelle Batholith in the northern New England Fold Belt. Lithologies of major interest include the Delubra gabbro and the Hawkwood gabbro. Both are characterised by a primary magmatic mineralogical layering and geochemical studies have shown a relationship between magnetite content, Cu and PGE mineralisation and sulphidation.

3.2. Production/Exploration History

There are no JORC compliant mineral resources and/or mineral reserves located on Hawkwood. Mining related workings and infrastructure located on Hawkwood are restricted to very small scale historical diggings.

3.3. Proposed Exploration Program

The program of activities for the EPM 15289 was not completed with during the reporting period. Rugby applied for a variation pursuant to the provisions of Section 141C of the Minerals Resources Act 1989 as the company experienced considerable delays in the assignment of EPM 15289 from Newcrest Operations and consequently was unable to implement the planned exploration program.

Rugby plans to complete the proposed exploration program to follow up gold, copper and iron targets and expects to drill iron targets within the next twelve months, should they be verified by ground work.

4. Location and Access

Hawkwood is located 50 km southwest of the township of Mundubbera, Queensland and 380 km northwest of Brisbane along the Burnett Highway. Mundubbera is linked to the major regional centres of Maroochydore (215 km southeast) and Maryborough (140 km east) via the sealed A1 and A3 highways and by rail.

Access to Hawkwood by road transport is via sealed road from Mundubbera then a number of unsealed farm tracks which dissect Hawkwood.

Hawkwood's proximal location to Mundubbera (population 2,500) provides the opportunity to utilise the existing civil infrastructure and facilities including skilled work force, commercial services, transport, water and power reticulation.

Figure 3 Project Location

5. Physiography & Vegetation

Hawkwood topography is characterised by gently undulating plateaus which are cut by recessive streams, the largest of which, the Auburn, the Burnett and the Boyne rivers, intersect east of the license area. Height above sea level varies from approximately 400 m to 200 m along the rivers.

The region has been largely cleared for fruit plantations, some grain cropping and cattle grazing.

Outcropping rock exposures are rare and restricted to a few low lying ridges.

Figure 4: Hawkwood landscape (looking north)

The region has a subtropical climate without a distinctive dry season, although most of the rain does occur in summer.

The average annual rainfall is 763 mm with an average of 48 rain days per year. December and January are the wettest months (100-110 mm) and August and September the driest (30-35 mm of rain on average).

The hottest months occur between December and February (inclusive) with maximum temperatures averaging over 32° C. By contrast, the winters are moderate with the mean daily maximum for July, the coldest month, being 22°C and the mean daily minimum approximately 6°C.

In summary, Hawkwood has an effective 12 month operating season with very little risk of climatic conditions negatively impacting future activities.

6. Exploration Rationale

The mineral deposit type to be explored for at Hawkwood is a copper-rich variant of a Skaergaard-type layered mafic complex.

Past exploration has shown that copper mineralisation is associated with layered magnetite rich cumulates within an olivine ferri-gabbro. Chalcopyrite is the principal copper sulphide

mineral and appears to occur in association with elevated Pt, Pd and Au values and possibly spatially related to acid dykes.

7. Geological Data

7.1. Regional Geology

The property is located within the Auburn Subprovince of the northern New England Fold Belt (1:250,000 Mundubbera sheet). The Auburn Subprovince is a Late Devonian to Early Carboniferous Andean-style volcanic arc situated between Yarrol Province to the east and the Bowen Basin to the north-west.

The Auburn Subprovince comprises the Narayen Beds and various intrusive rocks of the Rawbelle Batholith. The Narayen Beds are early Permian dominantly andesitic (and lesser rhyolitic) conglomerate or breccia, sandstone, lava flows, siltstone, limestone, and chert. Intrusives include Permo-Triassic Greencoat Monzonite, Mt Saul Adamellite and the Hawkwood / Delubra Gabbro laccolithic intrusive complex.

Figure 5 Regional Geology

7.2. Local Geology

The majority of Hawkwood is underlain by the Early Permian Narayen Beds (which has strong affinities with the Camboon Andesite at the adjacent Cracow mining district (900,000 oz gold) and comprises a basal sedimentary sequence overlain by andesite.

The Narayen Beds form a roof pendant to the multiphase intrusions of the Late Permian to Early Triassic, Rawbelle Batholith and are intruded on all sides by various granite, granodiorite, adamellite and gabbroic bodies (including the Hawkwood and Delubra gabbros).

Figure 6: Local and property geology

The Mid Triassic Mount Saul Adamellite, associated ring dykes and resurgent Morang volcanics intrude all of the above units and it is this caldera-like structure which hosts the adjacent Rosehall epithermal gold prospect.

The Hawkwood gabbro is a Late Permian, layered mafic intrusive unit with dimensions measuring 13 km by 8 km. It has a wide variation in composition and texture and can be divided into a lower zone of layered cumulates of magnetite, olivine-augite and augite and an upper portion of gabbroic rocks.

In contrast, the Delubra gabbro is a porphyritic pyroxene-hornblende quartz gabbro with little apparent compositional variation.

Tertiary and recent sediments are common and can be associated with a deep duricrust.

7.3. Property Geology

Hawkwood is located in the southern extension of the Rawbelle Batholith, specifically in the Delubra gabbro and the more southern Hawkwood gabbro. Layering has been identified in the gabbros in the northwest corner of the licence area where high magnetite concentrations have been noted. More commonly observed layering comprise smaller-scale augite-hornblende rich banding alternating with olivine-plagioclase rich bands.

In the north western zone the average dip of the layers is reported to be 20° south, however, the dip appears to be more variable in the remainder of the property area.

Geochemical studies have shown a relationship between magnetite content, PGE mineralisation and sulphidation. Additionally, there is a positive correlation between copper and sulphur and copper and PGE occurrence.

Volcanics and sediments of the Narayen Beds occur in the southeast and southwest of the licence area as does an olivine basalt overlying part of the Delubra gabbro and Narayen Beds.

A series of north-northwest trending, east dipping thrust faults are interpreted to occur in the western part of the licence area resulting in a faulted contact between the gabbros and Narayen Beds.

8. Deposit Type

The mineral deposit type to be explored for at Hawkwood is a copper-rich variant of a Skaergaard-type layered mafic complex.

Past exploration has shown that copper mineralisation is associated with layered magnetite rich cumulates within an olivine ferri-gabbro. Chalcopyrite is the principal copper sulphide mineral and appears to occur in association with elevated Pt, Pd and Au values and possibly spatially related to acid dykes.

Anomalies of elevated copper values returned in soil geochemical surveys are considered to be the dispersion haloes related to the supergene enrichment of the primary sulphide mineralisation, as intersected in trench and drill samples.

The Company intends to test these concepts in their proposed exploration programme.

9. Mineralisation

9.1. Walkers Road & Hawkwood Copper Prospects

The Walkers Road and Hawkwood copper prospects are situated within EPM 15289. Their location is shown in Figure 3 and 4.

Figure 7: Prospect Location

The main iron oxide mineral exposed in trenching is haematite which is considered to be a weathering product of primary magnetite and Fe/Cu sulphides. This is supported by traces of remnant magnetite exposed is saprolitic basement rocks. Mineralogical layering forms shallow dipping to sub-horizontal zones.

The saprolitic host is mottled and white to purple-grey in colour reflecting the dominance of kaolinite. Quartz in the form of veining is not uncommon and presently thought to be associated with a late alteration event.

The base of anomalous Cu (>0.1%), Pt and Pd (>0.1ppm) appears to correspond to the base of the highly weathered upper saprolite, which is characterised by manganese oxides in addition to haematite and pedogenic carbonate. Drilling indicates the width of this upper zone is in the order of 12 m.

The one anomaly drilled to date has dimensions in the order of 90 m by 50 m by 20 m and is open at depth and to the northwest along an interpreted thrust fault.

The potential for additional mineralised zones is suggested by the presence of numerous Cu-Pt-Pd anomalies in soil geochemical data.

9.2. Hawkwood Iron Prospect

The Hawkwood gabbro contains magnetite that is concentrated in layers and pods which dip shallowly to the south. As many as four layers are present over a 60 m vertical interval. The range of thickness in the drilled area is from 3 m to 18 m and the iron content ranges from 10% Fe to 42% Fe. Most drilling has been conducted on the margin of a strong magnetic feature associated with the gabbro and the very high magnetic susceptibilities may be derived from a magnetite cumulate concentration in more mafic/ultramafic parts of the intrusion.

Figure 8: Hawkwood iron prospect aeromagnetics

9.3. Surrounding Rock Types

Although outcrop is very sparse within and immediately adjacent to the licence area, drilling and trenching has intersected coarse to very coarse leucogabbro in the vicinity of the supergene mineralisation. Mafic layering within the gabbro is reflected by the occurrence of bands and anatomising laminations of iron and manganese oxides dipping gently northwest. Less common litholgies include dolerite and pegmatite dykes.

9.4. Regolith and Weathering Profile

Transported and residual soil profile varies from 1.0 m to 6.0 m in depth and immediately overlies a highly weathered, saprolitic layer characterised by pedogenic carbonate nodules. Depth of the saprolite is not well defined but is generally greater than 16 m.

9.5. Geological Controls

As discussed, primary mineralisation is considered to be related to the original mineralogical layering within the gabbro.

Secondary mineralisation is related to supergene enrichment in the well developed weathering profile. Structural features such as the interpreted northwest trending thrust fault may also enhance the development of the supergene zone at depth.

10. Exploration Program

10.1. Previous Exploration

The most recent copper and gold exploration was conducted by Newcrest who targeted volcanic hosted epithermal or porphyry gold-copper deposits.

Prior to Newcrest, copper exploration was also conducted in the late 1990's to early 2000's and included a variety of geochemical surveys (soil, rock chip, stream sediment and trench sampling), geophysics (aerial and ground electro-magnetic surveys) and some drilling (RC and RAB).

This work was successful in delineating a shallow zone of oxide copper mineralization with trench samples returning values up to 0.55% Cu over 3 m and drilling intersections up to 20 m at 0.51% Cu from a depth of 2 m.

Exploration for elements other than copper was focused on magnetite and gold. From 1967 to 1989 various companies explored the Hawkwood iron prospect drilling 16 diamond holes totalling 1,240m and completing aeromagnetic and ground magnetometer surveys. Gold

exploration was previously conducted in the vicinity the old workings at Main Top and Narayen (located within EPM 14206 and 15289) and adjacent prospects including Truzes, Great Eastern, Five Mile, Mary Elizabeth and Klondyke.

10.2. Historical Estimates

Hawkwood is an early stage exploration property, hence does not contain any current or historical estimates of copper mineral resources or mineral reserves.

However, with respect to iron, several historical estimates of the Hawkwood iron prospect have been made based on historical drilling and the interpretation of regional and ground magnetic data (Table 2). These estimates range in size up to 500 million tonnes at grades between 19% Fe and 25% Fe. The mineral resource categories applied to these historical estimates remains unclear and therefore they are not able to be classified according JORC

The historical mineral resource estimates should not be relied upon and their relevance extends only as an indication of potential.

Year Company Tonnes* Grade* Source 1968 Geological Survey of Approx 20 million 25% Fe, Departmental Diamond Drilling Queensland Program, Magnetite Deposits, 2.0% Ti Hawkwood Area. Queensland Government Mining Journal 1968, Vol 69 1971 Thiess Peabody, Mitsui Approx 500,000 23% Child and Davis, 2000 (see Coal Pty Ltd Section 20, Sources of Information). United Reefs NL 1989 Approx 100 to 200 million 25% (assumed) Child and Davis, 2000 (see Section 20, Sources of Information). 1999 25% (assumed) Pan Australian Exploration Approx 200 to 500 million Child and Davis, 2000 (see Pty Section 20. Sources of Information). * Not JORC compliant

Table 3 Historical mineral resource estimates

10.3. Previous Mining

Historical gold production from the Hawkwood region is reported at approximately 75 kg of gold mined from quartz reef/vein-related mineralisation. However, it is not well understood how much production was derived from within the areas covered by EPM 15289.

11. Work Conducted and Recommendations

The work carried out by Rugby during the period includes:

- Acquisition and preliminary evaluation and interpretation of available airborne magnetic data
- Execution of land-owner access and compensation agreements.
- Bedrock sampling on the Hawkwood Grid, where a total of 119 bedrock auger holes were drilled on 200m x 200m spaced intervals. This program defined a >500pppm copper geochemical anomaly over an area of 200m x1,200m, with a maximum assay of 1,850ppm copper.
- A reconnaissance program along existing roads and tracks was also conducted to locate outcropping iron mineralization within highly magnetic aeromagnetic anomalies identified by previous aeromagnetic surveys. A total of 9 rockchip samples were collected of iron mineralization and assays ranged from 24.9% to 52.1% iron.

11.1. Geophysics

Rugby acquired the historic magnetic data using imaging consultant Geolmage of Brisbane. One of the principal objectives of this study is to determine the extent of potentially mineralised mafic intrusive complexes within the tenement package. Much of the tenure is overlain by Tertiary to Recent duricrust deposits and locally basalt. Magnetic interpretation is required to assess the extent of the Delubra Quartz Gabbro which is reported to host anomalous platinum group elements, copper, gold and iron.

The geological interpretation used to assist the study was derived from the Queensland Government Central Queensland Region Geoscience Data Set (Version 2, June 2005), known as the Yarrol-Connors-Auburn GIS. The eastern part of the tenement package is underlain by a number of intrusive complexes, notably the Cadarga Creek Granodiorite, the Cheltenham Creek Granodiorite and the Delubra Quartz Gabbro all considered to be Late Permian to Early Triassic in age. In contrast the western part is largely underlain by Early Permian andesitic volcaniclastic rocks of the Narayen Beds. These are intruded to the southwest by the Greencoat Monzonite (Late Permian) and intruded and overlain by the Mount Saul Adamellite and Morang Volcanics (Late Triassic). See Figure 15.

Figure 9: Hawkwood Project basement geology

11.1.1. Processing by Geolmage

The Rio Tinto Exploration Hawkwood openfile survey was received as located and gridded data from the Queensland Department of Mines and Energy (QDME) and the Mundubbera survey was downloaded as located data from Geophysical Archive Data Delivery System (GADDS).

The magnetics located data of the Hawkwood survey was microlevelled using Intrepid to a subset of the gridded Mundubbera magnetics over the same area. The microlevelled Hawkwood located data and the Mundubbera located data were then combined. All processing was done in AGD66/TMAMG56. After merging of the located data the eastings and northings were converted to GDA94/MGA56.

There is still some residual levelling problems in the coincident Hawkwood-Mundubbera that appear similar to heading errors. These may be due to different flying heights of the surveys (80 metre for Mundubbera and 105 for Hawkwood) or differences in accuracies of the coordinate readings at the sampling points.

The combined located magnetics data was gridded in Intrepid at 37.5-metre resolution over the coincident Hawkwood-Mundubbera area and at 75-metre resolution over the complete combined survey. The 75-metre grid was extrapolated to 37.5 metres and stitched to the coincident Hawkwood-Mundubbera grid using Intrepid. The resultant 37.5 metre resolution grid was then stitched into a regional grid stitch of the QDME surveys held in archive.

The first vertical derivative (VD1), second vertical derivative (VD2) and reduced to pole (RTP) grids were calculated from the magnetics grid stitch (referred to herein as Regional) shown above using Intrepid. The first vertical derivative (RTP VD1) of the RTP was also calculated using Intrepid.

In addition to the magnetics, a subset of the Shuttle Radar Topography Mission (SRTM) DEM is provided.

Figure 10: Hawkwood Magnetics

Figure 11: Hawkwood Magnetics (Greyscale RTP maximum gradient)

Figure 12: Hawkwood Magnetics (Coloured RTP maximum gradient)

Figure 13: Hawkwood Magnetics (vd2 – Greyscale VD2 of mag)

Figure 14: Hawkwood Magnetics (mag_on_maxgrad – Coloured mag draped on mag maximum gradient)

Figure 15: Hawkwood Magnetics (Greyscale VD1 of RTP)

11.1.2. Aeromagnetic Interpretation

A preliminary unlevelled TMI image derived from this database (Figure 16). Lines were flown at nominal 200m spacing in an east-west orientation.

Figure 16: Preliminary TMI image

Figure 17: Magnetic interpretation

Interpretation was designed to define broad zones of similar magnetic signature. Comparing and contrasting these with mapped geology. A number of domains were recognised (Figure 17):

- 1. Strong Narrow Corridor: This is an elongate, narrow zone of high susceptibilities which dominates the central and eastern part of the tenure. In the southernmost part segregations of almost massive magnetite occur and are associated with anomalous copper gold and platinum group elements. This interpretation suggests that this zone lies almost wholly within the Delubra Quartz Gabbro body, the exception being the northeastern-most extent of the corridor which is mapped as Cadarga Creek Granodiorite. A zone of hornfels development within the gabbro, adjacent to the northern Cheltenham Granodiorite is interpreted to explain some of the arcuate high susceptibilities.
- 2. Moderate-Strong: This is a zone moderate to strong susceptibilities, with a number of small discrete highs. The eastern-most part of this area is mapped as granodiorite, with the west being gabbro. The contact is apparently well mapped in the field, but on this preliminary image of TMI is largely not detected. The only difference between the east and west appears to be the orientation of internal structures; the granodiorite hosts NW-SE trending, whereas the gabbro hosts largely N-S trending magnetic lineaments.
- 3. Moderate-Weak Circular: This zone is located in the central-northern part of the tenure and consists of two nearly circular non-magnetic features, each some 10km in diameter. The southernmost is mapped as Cheltenham Creek Granodiorite and the northernmost the Pollard Granodiorite. The relationship to the mapped gabbro to the south suggests these are younger intrusions, and the arcuate zone of high susceptibility within the gabbro might be a magnetic hornfels effect.
- 4. Weak-Subdued: The large area (some 20km in diameter) of low susceptibilities in the western part of the tenure is largely mapped as older volcaniclastic sediments of the Narayen Beds.
- 5. Moderate Annular and Circular: A belt of circular, annular and arcuate zone of weak to moderate susceptibility extends across the southern part of the tenure. In the west these are clearly associated with intrusions of the same shape. In the east however, at least one arcuate magnetic ridge corresponds to mapped Delubra Quartz Gabbro. A central-northern arcuate feature corresponds to a sequence of metabasalts.

On the basis of this preliminary TMI data and the mapped extent of the Delubra Quartz Gabbro it is suggested that the gabbro is probably made up of a number of differentiated zones each of variable composition and magnetic susceptibility. Field observations confirm this, with outcrops of felsic, locally granitic rocks, encountered within what has been mapped at Delubra Quartz Gabbro.

Very high susceptibilities may be derived from:

- Magnetite cumulate concentration in more mafic/ultramafic parts of the intrusion, or
- The development of magnetite hornfels at the margin of the Cheltenham Creek Granodiorite.

This preliminary study suggests that the gabbro extends beneath cover to the south and that much of EPM 15289 is underlain by gabbro.

11.2. Geochemistry

11.2.1. Rockchip Sampling

Rugby has undertaken a preliminary rock chip sampling program and a total of 4 rock chip samples were collected from the Hawkwood prospect (Figure 18). Samples were in the order of 0.5 to 2kg in size and either selective grab samples, or rock chips collected from outcrop within a three metre radius of the sample point. Sample preparation, analytical techniques and results are outlined in Appendix 1.

Figure 18: Prospects and sample traverse

The Hawkwood prospect has previously been reported to host elevated iron (as magnetite) and copper mineralisation. It is hosted in the Delubra Quartz Gabbro which, has been reported to host elevated gold and copper in soil samples, notably at the Walkers Road Prospect. A total of four samples were collected from this prospect. These returned anomalous copper to 1820ppm, gold to 0.256ppm, platinum to 0.135ppm, palladium to 0.174ppm and iron to 55.8%. These results suggest anomalous values do occur within parts of the Delubra Quartz Gabbro and generally confirm previous results from this prospect. Assay results are shown in Appendix 1.

Figure 19: Sampling Magnetite-rich outcrops at the Hawkwood Prospect.

Sample #437007

A reconnaissance program along existing roads and tracks was also conducted to locate outcropping iron mineralization within highly magnetic aeromagnetic anomalies identified by previous aeromagnetic surveys. A total of 9 rockchip samples were collected of iron mineralization and assays ranged from 26.0% to 52.1% iron.

Rockchip sample locations and iron assay results are shown on Figure 20. Sample details and analytical result sheets are shown in Appendix 1.

Figure 20: Rockchip sample locations and Fe(%) assay results

11.2.2. Bedrock Auger Sampling

A bedrock sampling program using a Dingo mechanical auger drill was conducted on the Hawkwood Grid (Figure 21).

Figure 21: Bedrock Auger Sampling (Dingo mechanical auger drill)

A total of 119 bedrock auger holes were drilled on 200m x 200m spaced intervals. The program defined a >500pppm copper geochemical anomaly over an area of 200m x1,200m, with a maximum assay of 1,850ppm copper (Figure 23).

All samples were photograhed and magnetic suscepbility measurements were recorded.

Figure 22: Magnetic Susceptibility Measurement

Appendix 2 includes the following details:

- Hole location (UTM AGD66 datum)
- Hole depth
- Sample colour
- Magnetic susceptibility measurements
- Remarks
- Sample photographs
- Analytical result sheets

Figure 23: Bedrock Auger Geochemistry – Cu ppm

12. Proposed activities

Rugby plans to complete the proposed exploration program to follow up gold, copper and iron targets and expects to drill the targets within the next twelve months, should they be verified by further ground work.

13. Significant mineralization identified and related geological or structural features

No new mineralised outcrops or geological features were located within the tenement.

14. References

Child, R. and Davis, L., 2000. Development Proposals for the Hawkwood project (Queensland). Development of the Hawkwood Iron deposit in conjunction with potential power and steel projects, North Burnett Region, Southeast Queensland: Discussion document. Pan Australian Resources N.L. Internal report.

Geoserve, Number 18 April/June 2005. Queensland Department of Natural Resources and Mines.

Gold Occurrences in South-East Queensland. Extract from the Queensland Mining Guide. Halcombe, R.J, Stephens, C.J, Fielding, C.R., Gust, D., Little, T.A., Sliwa, R., McPhie, J., and Ewart, A., 1996. Tectonic Evolution of the Northern New England Fold Belt: Carboniferous to Early Permian transitions from active accretion to extension. Australian Journal of Earth Sciences.

Johnston, A.C., 2001. Annual Report, Hawkwood Project, EPM 10299 for the period 28 September 2000-27 September 2001. Pan Australian Exploration Pty Ltd.

Jones, M.R., 2003. Mundubbera 1:250,000 Sheet, Queensland. CRC LEME 2003, Department of Mineral Resources and Mines.

Malnic, J., 1994. EPM 4124 Queensland, Hawkwood Area, final report, volume 1. Aluka Pty Ltd

Murray, C.2004, Granites of the Northern New England Orogen. The Ishihara Symposium: Granites and Associated Metallogenesis. Geological Survey of Queensland.

Rivers, C. Pearce, H., 1995. EPM 10299 Hawkwood project annual report for period ending 27/9/95. Cynate Pty Ltd / Terra Firma Resources.

APPENDIX 1

ROCKCHIP GEOCHEMISTRY

- Sample location (UTM AGD66 datum)
- Analytical result sheets

Sample Locations and Descriptions

SAMPLE	PROSPECT	East	North	Description
437007	Hawkwood Iron	284116	7145339	Magnetite rich gabbro
437008	Hawkwood Iron	284103	7145360	Magnetite rich gabbro
437009	Hawkwood Iron	284054	7145439	Quartz crystal gossan
437010	Hawkwood Iron	284068	7145436	Magnetite rich gabbro - trace malachite?

Preparation and Analytical Methods ALS-CHEMEX

CODE	Description
CRU-21	Coarse crushing of rock to 70% nominal -6mm
SPL-21	Split sample using riffle splitter
PUL-23	Pulverise a split or whole sample of up to 250g to 85% passing 75 microns or better
Au-AA26	Au by fire assay and AAS (50g charge)
ME-ICP61a	Four acid digestion ICP-AES
ME-XRF11	Iron ore analyses using lithium metaborate fusion
OA-GRA05t	Loss on ignition. Multitemperature at 1000 degrees
PGM-ICP-24	Pt, Pd, Au using fire assay 50g charge with ICP-AES finish

	WEI-21	Au-AA26	ME- ICP61a											
	Recvd Wt.	Au	Ag	Al	As	Ва	Ве	Bi	Са	Cd	Со	Cr	Cu	Fe
	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%
	0.02	0.01	1	0.05	50	50	10	20	0.05	10	10	10	10	0.05
437007	3.4													
437008	5.27													
437009	1.66		2	2.76	150	80	<10	<20	0.09	<10	20	30	1820	10.85
437010	1.24		<1	4.64	<50	90	<10	<20	3.83	<10	100	310	730	28.7
	ME- ICP61a													
	Ga	K	La	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sc	Sr
	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm
	50	0.1	50	0.05	10	10	0.05	10	50	20	0.1	50	10	10
437007														
437008														
437009	<50	0.3	<50	0.06	150	<10	1.83	10	90	<20	0.2	<50	<10	20
437010	<50	0.1	<50	6.62	2790	<10	0.33	90	130	30	0.1	<50	30	190
	ME- ICP61a	ME- XRF11												
	Th	Ti	TI	U	V	W	Zn	SiO2	Al2O3	As	Ва	CaO	CI	Со
	ppm	%	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	%	%
	50	0.05	50	50	10	50	20	0.01	0.01	0.001	0.001	0.01	0.001	0.001
437007								27.1	6.86	<0.001	0.012	4.71	0.029	0.015
437008								2.9	3.89	<0.001	0.003	0.11	0.017	0.021
437009	<50	0.13	<50	<50	170	<50	120							
437010	<50	2.17	<50	<50	1210	<50	260							

	ME- XRF11	ME- XRF11	ME- XRF11	ME- XRF11	ME- XRF11	ME- XRF11	ME- XRF11	ME- XRF11	ME- XRF11	ME- XRF11	ME- XRF11	ME- XRF11	ME- XRF11	ME- XRF11
	Cr	Cu	Fe	K20	MgO	Mn	Na2O	Ni	Р	Pb	s	Sn	Sr	TiO2
	%	%	%	%	%	%	%	%	%	%	%	%	%	%
	0.001	0.001	0.01	0.001	0.01	0.001	0.01	0.001	0.001	0.001	0.001	0.001	0.001	0.01
437007	0.031	0.059	31.8	0.204	10	0.248	0.59	0.01	0.027	0.003	0.016	<0.001	0.014	3.68
437008	0.211	0.156	55.8	0.086	1.94	0.198	<0.01	0.022	0.006	<0.001	0.064	<0.001	0.002	7.79
437009														
437010														
	ME- XRF11	ME- XRF11	ME- XRF11	PGM- ICP24	PGM- ICP24	PGM- ICP24	OA- GRA05t							
	V	Zn	Zr	Au	Pt	Pd	LOI 1000							
	%	%	%	ppm	ppm	ppm	%							

0.01

0.42

1.61

0.001

0.215

0.448

437007

437008

437009

437010

0.001

0.024

0.032

0.001

0.001

0.001

0.001

0.012

0.031

0.256

0.061

0.005

0.042

0.135

< 0.005

0.06

0.001

0.01

0.174

0.004

0.018

EXCELLENCE IN ANALYTICAL CHEMISTR

Australian Laboratory Services Pty. Ltd.

32 Shand Street Stafford Brisbane QLD 4053

Phone: +81 (7) 3243 7222 Fax: +61 (7) 3243 7218 www.alschemex.com

Page: 2 - E

Total # Pages: 2 (A - B) Finalized Date: 18-MAR-2009

Account: RUGMIN

QC CERTIFICATE OF ANALYSIS OR09019983

Sample Description	Method Analyte Units LOR	ME-ICP43 Pb ppm 1	ME-ICP43 S % 0.01	ME-ICP43 Sb ppm 2	ME-ICP49 Zn ppm 1	Fe-0G46 Fe % 0.01	
			· ·			STANDARDS	
GBM302-10 Target Range - Lower Bo Upper Bo GBM305-11 Target Range - Lower Bo	und und					5,99 5,68 6,12 28,1	
Upper Bo GBM998-5 Target Range - Lower Bo Upper Bo ST-345 Target Range - Lower Bo	und und	521 453 565 90 75	0,31 0,26 0,34 0.03 0,19	8 <2 8 <2 <2	118 98 122 65 58		
Upper Bo		94	0.25	4	69		
BLANK					-4 ·	BLANKS	
BLANK Target Range - Lower Bo Upper Bo	und und	<1 (4)	<0.01 <0.01 0.02	<2 <2 4	<1 (1) (1)	<0.01 <0.01 0.02	
						DUPLICATES	
437048 DUP Target Range - Lower Bo Upper Bo		13 13 13 16	0.02 0.02 <0.01 0.03	<2 <2 <2 •2	11 11 9		
437205 DUP Terget Range - Lower Bo Upper Bo	und und					25.4 26.3 25.2 26.5	

EXCELLENCE IN ANALYTICAL CHEMISTRY

Australian Laboratory Services Pty. Ltd.

32 Shand Street Stafford Brisbane QLD 4053

Phone: +61 (7) 3243 7222 Fax: +61 (7) 3243 7218 www.alschemex.com

CERTIFICATE OR09019983

Project:

P.O. No.:

This report is for 14 Rock samples submitted to our lab in Orange, NSW, Australia on 19-FEB-2009.

The following have access to data associated with this certificate:

PAUL JOYCE

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
LEV-01	Waste Disposal Levy	
CRU-21	Crush entire sample >70% -6 mm	
PUL-23	Pulv Sample - Split/Retain	
BAG-01	Bulk Master for Storage	
SPL-21	Split sample - riffle splitter	

Finalized Date: 18-MAR-2009

Account: RUGMIN

	ANALYTICAL PROCEDURE	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP43	Up to 18 element add-on AR Au	ICP-AES
Fe-OG46	Ore Grade Fe - Aqua Regia	VARIABLE
ME-OG46	Ore Grade Elements - AquaRegia	ICP-AES
Au-TL43	Trace Level Au - 25g AR	ICP-MS

To: RUGBY MINING PTY LIMITED ATTN: PAUL JOYCE
1 GUNDY PLACE
WESTLEIGH NSW 2120

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Shaun Kenny, Brisbane Laboratory Manager

Comments: High Fe concentrations cause interferences on Pb by ICP-AES, although a correction has been applied there maybe some error associated with them.

EXCELLENCE IN ANALYTICAL CHEMISTRY

Australian Laboratory Services Pty. Ltd.

32 Shand Street Stafford Brisbane QLD 4053

Phone: +61 (7) 3243 7222 Fax: +61 (7) 3243 7218 www.alschemex.com

Page: 2 - /

Total # Pages: 2 (A - B) Finalized Date: 18-MAR-2009

CERTIFICATE OF ANALYSIS OR09019983

Account: RUGMIN

				(.,				<u></u>		OFILLI IQUIT OF VITATION OFFICE					710000	
Bample Description	Method Analyte Units LOR	WEI-21 Recyd Wt. kg 0.02	Au-TL43 Au ppm 0.001	ME-ICP43 Ag ppm 0.2	ME-ICP43 As ppm 1	ME=ICP43 Ba ppm 10	ME-ICP43 Bi ppm 2	ME-ICP43 Ca % 0.01	ME-ICP43 Cd ppm 1	ME-ICP43 Go ppm 1	ME-ICP43 Cu ppm 1	ME-ICP43 Fe % 0.01	ME-ICP43 Mg % 0.01	ME-ICP43 Mn ppm 5	ME-ICP43 Mo ppm- 1	ME-ICP43 NI ppm 1
437044 437045 437046 437047 437048		3.78 2.36 4.32 1.16 1.26	0.002 0.001 0.001 0.028 0.001	<0.2 <0.2 <0.2 <0.2 <0.2	22 20 23 21 77	20 10 20 40 40	15 15 16 11 7	0.01 0.02 0.03 0.03 0.02	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	5 4 4 7 28	>20.0 >20.0 >20.0 >20.0 >20.0 >20.0	0.02 0.03 0.03 0.04 0.02	<5 <5 <5 <5 49	2 2 2 3 2	<1 4 <1 3 1
437201 437202 437203 437204 437205		5.24 6.02 4.24 3.56 3.70	0.001 0.001 0.009 0.011 0.008	<0.2 <0.2 <0.2 <0.2 <0.2	3 3 2 2 2	50 210 80 110 80	12 9 17 11 6	0.03 0.02 0.09 0.50 0.45	<1 <1 <1 <1 <1	10 16 73 81 67	184 120 761 707 630	>20.0 >20.0 >20.0 >20.0 >20.0 >20.0	0.10 0.08 0.54 3.26 3.31	401 282 1435 1565 1365	81 1 81 81	20 26 128 108 96
437208 437351 437352 437353		2.60 3.70 6.50 1.46	0.019 0.010 0.001 0.001	<0.2 <0.2 <0.2 <0.2	1 1 3 1	150 110 10 90	8 8 15 17	0.37 0.81 0.02 0.03	<1 <1 <1 <1	53 63 30 47	651 782 239 916	>20.0 >20.0 >20.0 >20.0 >20.0	1.85 2.68 0.07 0.17	1580 1340 355 567	1 <1 1	52 69 47 100

EXCELLENCE IN ANALYTICAL CHEMISTRY

Australian Laboratory Services Pty. Ltd.

32 Shand Street Stafford Brisbane QLD 4053 Page: 2 - E

Total # Pages: 2 (A - B) Finalized Date: 18-MAR-2009

Account: RUGMIN

(763		3risbane QLD 405 3hone: +61 (7) 324	э 43 7222 Fax	; +61 (7) 3245	7218 www	alschemex.	com	CERTIFICATE OF ANALYSIS OR0901	9983
smple Description	Method Analyte Units LOR	ME-ICP43 P ppm 10	ME-ICP43 Pb ppm 1	ME-ICP43 8 % 0.01	ME-ICP43 9b ppm 2	ME-ICP43 Zn ppm 1	Fe-OG48 Fe % 0,01		
37044 37046 37046 37047		360 300 360 300	29 27 39 33	0.01 0.01 0.01 0.02	<2 <2 <2 <2	4 7 6 5	36.6 41.3 47.2 30.0		
37048 37201 37202 37203 37204 37205		200 200 200 <10 80 180	13 6 7 5 3	0.02 0.02 0.02 <0.01 0.01	<2 <2 <2 <2 <2 <2 <2	11 6 6 216 64 57	26.0 49.8 52.1 49.0 28.3 25.4		
37206 37351 37352 37353		270 30 240 630	4 4 6 6	0.02 0.02 0.01 0.03	<2 <2 <2 <2 <2	59 56 11: 32	27.4 24.9 49.6 51.9		A CONTRACTOR CONTRACTO
,									
		·							

EXCELLENCE IN ANALYTICAL CHEMISTRY

Australian Laboratory Services Pty. Ltd.

32 Shand Street Stafford Brisbane QLD 4053

Phone: +81 (7) 3243 7222 Fax: +61 (7) 3243 7218 www.alschemex.com

QC CERTIFICATE OR09019983

Project:

P.O. No.:

This report is for 14 Rock samples submitted to our lab in Orange, NSW, Australia on 19-FEB-2009.

The following have access to data associated with this certificate:

PAUL JOYCE

	SAMPLE PREPARATION									
ALS CODE	DESCRIPTION									
WEI-21	Received Sample Weight									
LOG-22	Sample login - Rod w/o BarCode									
LEV-01	Waste Disposal Levy									
CRU-21	Crush entire sample >70% -6 mm									
PUL-23	Pulv Sample - Split/Retain									
BAG-01	Bulk Master for Storage									
SPL-21	Split sample - riffie splitter									

Page: 1

Finalized Date: 18-MAR-2009

Account: RUGMIN

	ANALYTICAL PROCEDURI	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP43	Up to 18 element add-on AR Au	ICP-AES
Fe-OG46	Ore Grade Fe - Aqua Regia	VARIABLE
ME-OG46	Ore Grade Elements - AquaRegia	ICP-AES
Au-TL43	Trace Level Au - 25g AR	ICP-MS

To: RUGBY MINING PTY LIMITED ATTN: PAUL JOYCE 1 GUNDY PLACE WESTLEIGH NSW 2120

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Shaun Kenny, Brisbane Laboratory Manager

Comments: High Fe concentrations cause interferences on Pb by ICP-AES, although a correction has been applied there maybe some error associated with them.

EXCELLENCE IN ANALYTICAL CHEMISTRY

Australian Laboratory Services Pty, Ltd.

32 Shand Street Stafford Brisbane QLD 4053 Page: 2 -

Total # Pages: 2 (A - B) Finalized Date: 18-MAR-2009

Account: RUGMIN

(///		spane QLD 40 one: +61 (7) 3:	243 7222 Fax	+61 (7) 3243	7218 www	alschemex.	com		(QC CER	TIFICAT	E OF A	NALYS	S OR	901998	3
Sample Description	Method Analyte Units LOR	Au-TL43 Au ppm 0.001	ME-ICP43 Ag ppm 0.2	ME-ICP43 As ppm. 1	ME-ICP43 Ba ppm 10	ME-ICP43 Bi ppm 2	ME-ICP43 Ca % 0.01	ME-ICP43 Cd ppm 1	ME-ICP43 Co ppm 1	ME-ICP43 Cu ppm 1	ME-ICP43 Fe % 0.01	ME-ICP43 Mg % 0.01	ME-ICP43 Mn ppm 5	ME-ICP43 Me ppm 1	ME-ICP43 Ni ppm: 1	ME-ICP43 P PPM 10
						ST	ANDARD	S								
GBM302-10 Target Range - Lower Sc Upper Bo GBM305-11 Target Range - Lower Bo	ound															
Upper Bo GBM999-5	und	0.608	>40	3	60	2	0.64	≪1	4	608	3,09	0,04	66	3	5	50
Target Range - Lower Bo Upper Bo	und und		53.3 40.0	2 4	30 70	<2 4	0.04 0.07	<1 2	2 4	436 536	2.59 3.15	<0.01 0.03	48 71	2	3 8	50 50
ST-345 Target Range - Lower Bo		0.055 0.047	1.3 0.8	1 *1	20 ≤10	3 <2	0,33 0,24	1	19 16	53 47	1.49 1.20	0.10 0.07	155 124	8	38 31	310 260
Upper Bo	und	0.063	1,4	2	AND A COLOMBIAN AND A SHEET WAS	4	0.32	2	21	80	1.48	0.11	162	10	41	340
						1	BLANKS									
BLANK BLANK		<0.001	<0.2	<1	<10	<2	<0.01	≪1	€1	≪1	<0.01	<0.01	≪5	<1	<1	<10
Target Range - Lower Bo Upper Bo		<0.001 0.002	<0,2 0,4	*1 2	<10 20	e	<0.01 0.02	«1 2	<1 2	<1 2	<0.01 0.02	<0,01 0,02	45 10	<(41 2	<10 20
			e Charles and The Committee of the Confession of	या के को विकास के विका र के प्रतिकार के किया है।	**************************************		PLICATE		e en transfer e 🗯 est e Periodo est.	ర్ కాలాంట్స్ ని. ఈ హిక్కు కోరి చేస్తున్నారి. చేస్తున్న			S. Aktivas Sile ¥. ⊕ tiveks is O		e, secon pros pes no in mo	o com perce e de provincia
437048		0.001	<0.2	77	40	7	0.02	<1	< 1	28	>20.0	0.02	49.	2	1	620
DUP Target Range - Lower Bo		<0,001 <0,001	<0.2 <0.2	75 00	40 30	5 4	0.01 <9.01	€1 €1	<1 <1	28 25	>20.0 18.50	0.02 <0.01	49 40	2 41	2 ≪1	610 560
Upper Bo	und	0.002	0.4	80	50	8	0,02	2	2	31	>20.0	0.03	67	3	2	670
437208 DUP Target Range - Lower So Upper Bo	und und															

Comments: High Fe concentrations cause interferences on Pb by ICP-AES, although a correction has been applied there maybe some error associated with them.

APPENDIX 2 BEDROCK AUGER GEOCHEMISTRY

- Hole location (UTM AGD66 datum)
- Sample descriptions
- Hole depth
- Magnetic susceptibility measurements
- Sample photographs
- Analytical result sheets

					HAWKV	WOOD PROJECT	- AUGER DRI	LLING	
SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
342	26-Sep-08	TM, MJ	288600	7143201	600	CHOCOLATE	703	HIT ROCK	Aug 75 #342
343	26-Sep-08	TM, MJ	288402	7143201	850	ORANGE/BROWN	741		Aug. 76 #343
344	26-Sep-08	TM, MJ	288400	7143404	850	ORANGE/BROWN	713		Aug 80 #344

SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY	REMARKS	РНОТО
345	26-Sep-08	TM, MJ	288402	7143604	800	ORANGE/BROWN	SI UNITS 489		AUG 84 #345
346	26-Sep-08	TM, MJ	288402	7143801	900	ORANGE/BROWN	682		AUG 88 # 346
347	26-Sep-08	TM, MJ	288603	7143798	900	ORANGE	220	DARK TOP LIGHT UNDER	AUG 87 #347

					HAWK \	WOOD PROJECT	- AUGER DRI	LLING	
SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
348	26-Sep-08	TM, MJ	288601	7143597	900	ORANGE/BROWN	467		Aug 83 # 348
349	26-Sep-08	TM, MJ	288600	7143399	550	ORANGE/BROWN	997	HIT ROCK	AUG 79 #349
350	26-Sep-08	TM, MJ	288802	7143198	500	RED/BROWN	2109	HIT ROCK	Aug 74 #350

SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
351	26-Sep-08	TM, MJ	288998	7143197	700	RED/BROWN	1601	HIT ROCK	Aug 73 #351
352	26-Sep-08	TM, MJ	288998	7143404	620	RED/BROWN	2061	HIT ROCK	AUG 77 #352
353	26-Sep-08	TM, MJ	288999	7143602	450	RED/BROWN	987	HIT ROCK - ROOT	AUG 81 #353

					HAWK \	WOOD PROJECT	- AUGER DRI	LLING	
SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
354	26-Sep-08	TM, MJ	288998	7143802	450	ORANGE/BROWN	1546	HIT ROCK	Aug 85 #354
355	26-Sep-08	TM, MJ	288805	7143800	800	RED/BROWN	1193		AUG 86 #355
356	26-Sep-08	TM, MJ	288799	7143597	500	RED/BROWN	990	HIT ROCK	AUG 82 #356

SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
357	27-Sep-08	TM, MJ	288799	7143397	480	RED/BROWN	1009	HIT ROCK	Aug 78 #357
358	27-Sep-08	TM, MJ	288404	7144613	700	LIGHT BROWN	239		AUG 145 #358
359	27-Sep-08	TM, MJ	288397	7144802	650	BROWN	212	HIT ROCK - CLAY	AUG 146 # 359

					HAWKV	VOOD PROJECT	- AUGER DRI	LLING	
SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
360	27-Sep-08	TM, MJ	288589	7144996	750	LIGHT BROWN	200	ROCKY	Aug. 89 #360
361	27-Sep-08	TM, MJ	288401	7145003	750	BROWN	1047		AUG 90 #361
362	27-Sep-08	TM, MJ	288198	7145001	550	BROWN	168	HARD CLAY	AUG 91 # 362

SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
363	27-Sep-08	TM, MJ	288017	7145218	800	DARK BROWN	101	HARD CLAY - BLACKSOIL	Aug 97 # 363
364	27-Sep-08	TM, MJ	288209	7145211	740	SANDY	496	ROCKY - HIT ROCK	Aug 96 #364
365	27-Sep-08	TM, MJ	288410	7145192	400	BROWN	249	ROCKY - HIT ROCK	Ava 95 #365

					HAWKV	VOOD PROJECT	- AUGER DRI	LLING	
SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
366	27-Sep-08	TM, MJ	288603	7145193	420	BROWN	391	ROCKY - HIT ROCK	AUG. 94 # 366
367	27-Sep-08	TM, MJ	288600	7145405	740	BROWN	570	HIT ROCK	AUG 99 #367
368	27-Sep-08	TM, MJ	288595	7145613	800	PINK	220		AUG 104 # 368

SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
370	27-Sep-08	TM, MJ	288392	7145604	640	CHOCOLATE	274	HIT ROCK	AUG 105 #370
371	27-Sep-08	TM, MJ	288395	7145391	800	SANDY	2170		Aug 100 # 371
372	27-Sep-08	TM, MJ	288195	7145394	740	BROWN	638	ROCKY	AUG 101 #372

					HAWKV	VOOD PROJECT	- AUGER DRI	LLING	
SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
373	27-Sep-08	TM, MJ	288206	7145607	760	LIGHT BROWN	64	SANDY	Aug 106 #373
374	27-Sep-08	TM, MJ	287993	7145589	650	CHOCOLATE	709		AUG. 107 #374
375	27-Sep-08	TM, MJ	288002	7145398	700	CHOCOLATE	390		AUG 102 # 375

SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
376	27-Sep-08	TM, MJ	287827	7145417	740	CHOCOLATE	506		AUG 103 #376
377	28-Sep-08	TM, MJ	287799	7145616	800	BROWN	671		AUG 108 #377
378	28-Sep-08	TM, MJ	288191	7144601	700	BROWN	162	BLACK SOIL	AUG 146 #378

					HAWKV	VOOD PROJECT	- AUGER DRI	LLING	
SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
379	28-Sep-08	TM, MJ	288205	7144803	700	RED/BROWN	587		AUG 148 #379
381	28-Sep-08	TM, MJ	288067	7145067	680	DARK BROWN	182		AUG 92 #381
382	28-Sep-08	TM, MJ	287898	7145301	670	BROWN	148		Aug 98 #382

SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
383	29-Sep-08	TM, MJ	284802	7146580	640	RED/BROWN	2184	HIT ROCK	Aug 124 #383
384	29-Sep-08	TM, MJ	284803	7146387	900	RED/BROWN	1213		Aug 121 #384
385	29-Sep-08	TM, MJ	284802	7146185	720	RED/BROWN	2425	HIT ROCK	AUG 142 #385

				ŀ	HAWKV	WOOD PROJECT	- AUGER DRI	LLING	
SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
386	29-Sep-08	TM, MJ	284815	7145989	386	RED/BROWN	1693	HIT ROCK	Aug 39 #386
387	29-Sep-08	TM, MJ	285002	7145992	720	CHOCOLATE	273		Aug. 38 #387
388	29-Sep-08	TM, MJ	285203	7145992	720	CHOCOLATE	473		Aug 37 #388
389	29-Sep-08	TM, MJ	285205	7145797	820	ORANGE/BROWN	853		

SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
									Aug 31 #389
390	29-Sep-08	TM, MJ	285207	7145604	750	BROWN	421		Aug 25 #390
391	29-Sep-08	TM, MJ	285196	7145398	720	LIGHT BROWN	969		AUG 19 #391

					HAWK \	WOOD PROJECT	- AUGER DRI	LLING	
SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
392	29-Sep-08	TM, MJ	285199	7145196	800	RED/BROWN	690		Ava 13 #392
393	29-Sep-08	TM, MJ	285207	7144998	900	RED/BROWN	1496		Aug 7 #393
394	29-Sep-08	TM, MJ	285194	7144803	740	ORANGE/BROWN	955		AUG1 #394

SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
395	29-Sep-08	TM, MJ	285004	7144804	880	LIGHT BROWN	1534		Aug 2 #395
396	29-Sep-08	TM, MJ	285041	7145047	740	BROWN	209		Aug. 8 #396
397	29-Sep-08	TM, MJ	285002	7145195	800	CHOCOLATE	173		AUG 14 #397

SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY	REMARKS	РНОТО
398	30-Sep-08	TM, MJ	284996	7145403	800	ORANGE/BROWN	SI UNITS 623		Aug 20 #398
399	30-Sep-08	TM, MJ	284983	7145592	900	ORANGE/BROWN	1457		AUG 26 # 399
400	30-Sep-08	TM, MJ	284989	7145807	880	ORANGE/BROWN	1054		AUC. 32 #400

SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
401	30-Sep-08	TM, MJ	284798	7145802	840	LIGHT BROWN	1470		AUG 33 #401
402	30-Sep-08	TM, MJ	284602	7145815	900	RED/BROWN	1561		AUG 34 #402
403	30-Sep-08	TM, MJ	284599	7146009	700	RED/BROWN	3256		Aug 40 #403

					HAWKV	VOOD PROJECT	- AUGER DRI	LLING	
SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
404	30-Sep-08	TM, MJ	284597	7146194	400	RED/BROWN	5479	HIT ROCK	Aug 143 #404
405	30-Sep-08	TM, MJ	284596	7146379	800	RED/BROWN	4764		AUG 122 # 405
406	30-Sep-08	TM, MJ	284397	7146197	620	RED/BROWN	3211	HIT ROCK	AUG 144 #406

SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
407	30-Sep-08	TM, MJ	284395	7145997	900	RED/BROWN	2844		AUG 41 #407
408	30-Sep-08	TM, MJ	284400	7145781	840	RED/BROWN	2497		Aug 35 #408
409	30-Sep-08	TM, MJ	284392	7145613	550	RED/BROWN	1778	HIT SOMETHING	Aug 29 #409

						WOOD PROJECT			
SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
410	30-Sep-08	TM, MJ	284586	7145607	940	RED/BROWN	3331		AUG 28 #410
411	30-Sep-08	TM, MJ	284596	7145383	700	BROWN	328	CLAY	AUG 22 #411
412	30-Sep-08	TM, MJ	284804	7145192	780	ORANGE/BROWN	1227	SANDY	AUG 15 #412

SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
413	30-Sep-08	TM, MJ	284792	7145013	800	SANDY	204		Aug 9 #413
414	30-Sep-08	TM, MJ	284660	7145204	940	SANDY	1844	SANDY	AUG.16 #414
415	30-Sep-08	TM, MJ	284397	7145396	350	CHOCOLATE	4241	ROCKY - HIT ROCK	AUG 23 #415

					HAWKV	VOOD PROJECT	- AUGER DRI	LLING	
SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
416	30-Sep-08	TM, MJ	284427	7145219	720	LIGHT BROWN	2919	HIT ROCK	AVG 17 #416
417	30-Sep-08	TM, MJ	284204	7145414	600	RED/BROWN	1496	HIT ROCK	AUG 24 #417
418	30-Sep-08	TM, MJ	284218	7145212	800	LIGHT BROWN	7310	HIT ROCK	AUG 18 #418

		_				VOOD PROJECT			
SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
419	30-Sep-08	TM, MJ	284226	7145113	680	SANDY	1690	HIT ROCK	Aug 12 #419
420	30-Sep-08	TM, MJ	284197	7145594	640	CHOCOLATE	269	ROCKY - HIT ROCK	Aug. 30 #420
421	30-Sep-08	TM, MJ	284195	7145802	800	LIGHT BROWN	2344		Aug 36 #421

SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
422	30-Sep-08	TM, MJ	284206	7145991	820	LIGHT BROWN	456		Aug 42 #422
423	1-Oct-08	TM, MJ	284200	7146205	850	RED/BROWN	2008		AVG 144 #406
424	1-Oct-08	TM, MJ	284803	7145604	380	CHOCOLATE	1181	HIT ROCK	AUG 27 #424

					HAWKV	VOOD PROJECT	- AUGER DRI	LLING	
SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
427	1-Oct-08	TM, MJ	284799	7145389	700	CHOCOLATE	184	HIT ROCK	AUG. 21 #427
434	2-Oct-08	TM, MJ	283794	7146186	900	SANDY	1836		AUG 129 #434
435	2-Oct-08	TM, MJ	283597	7146389	900	SANDY	6880	SANDY	Avg 65 #435

SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
436	2-Oct-08	TM, MJ	283603	7146193	550	BROWN	2472	HIT ROCK	Aug 58 #436
437	2-Oct-08	TM, MJ	283651	7146046	480	LIGHT BROWN	258	HIT ROCK	AVG 53 # 437
438	3-Oct-08	TM, MJ	283820	7145993	438	ORANGE	314	HIT ROCK	AUG 138 # 438

						VOOD PROJECT			
SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
439	3-Oct-08	TM, MJ	283839	7145809	600	ORANGE	1784	HIT ROCK	AUG 136 #439
440	3-Oct-08	TM, MJ	284007	7145825	700	BROWN	6457	HIT ROCK	Avg 135 #440
441	3-Oct-08	TM, MJ	284008	7145997	650	BROWN	316	HIT ROCK	Ava 137 #441

SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
442	3-Oct-08	TM, MJ	284597	7146581	550	RED/BROWN	1586	HIT ROCK	AUG 125 #442
443	3-Oct-08	TM, MJ	284358	7146380	700	RED/BROWN	598	IN A ROAD DRAIN	Ava 123 #443
444	4-Oct-08	TM, MJ	284007	7146210	850	ORANGE/BROWN	544		AUG 128 #444

SAMPLE	DATE	SAMPLER	AGD 66	AGD 66	DEPTH	COLOUR	MAGNETIC	REMARKS	РНОТО
SAMPLE NUMBER	DATE	SAWIFLER	E	N N	mm	COLOUR	SUSCEPTIBILITY SI UNITS	REWARRS	PHOTO
445	4-Oct-08	TM, MJ	283427	7146630	850	RED/BROWN	649		AUG 69 #445
446	4-Oct-08	TM, MJ	283597	7146596	680	BROWN	490	HARD WHITE CLAY	Aug 68 #446
447	4-Oct-08	TM, MJ	283802	7146595	920	RED/BROWN	770		AUG 141 #447

					HAWK \	WOOD PROJECT	- AUGER DRI	LLING	
SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
448	4-Oct-08	TM, MJ	284006	7146596	750	ORANGE/BROWN	376	HIT ROCK	Aug.140 #448
449	4-Oct-08	TM, MJ	284201	7146601	800	RED/BROWN	981		Aug 139 #449
450	4-Oct-08	TM, MJ	284364	7146602	850	RED/BROWN	1290		AUG 126 #450

					HAWKV	VOOD PROJECT	- AUGER DRI	LLING	
SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
451	4-Oct-08	TM, MJ	284172	7146437	780	BROWN	299		Aug 130 #451
452	4-Oct-08	TM, MJ	284000	7146403	700	CHOCOLATE	901		AUG 131 #452
453	4-Oct-08	TM, MJ	283847	7146463	650	CHOCOLATE	703	HIT ROCK	Aug. 132 #453

SAMPLE	DATE	SAMPLER	AGD 66	AGD 66	DEPTH	COLOUR	MAGNETIC	REMARKS	РНОТО
SAMPLE NUMBER			AGD 66 E	N	mm		SUSCEPTIBILITY SI UNITS		
454	4-Oct-08	TM, MJ	283377	7146410	650	BROWN	214		AUG 64 #454
455	4-Oct-08	TM, MJ	283379	7146219	800	BROWN	1853		AUG 59 #455
456	4-Oct-08	TM, MJ	283230	7145956	500	BROWN	1162	HIT ROCK	AUG55 #456

					HAWKV	VOOD PROJECT	- AUGER DRI	LLING	
SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
457	4-Oct-08	TM, MJ	283010	7145814	600	BROWN	528	HIT ROCK	AUG 51 # 457
458	4-Oct-08	TM, MJ	282758	7145667	650	BROWN	339	HIT ROCK	Aug 47 # 458
459	5-Oct-08	TM, MJ	282808	7146599	320	LIGHT BROWN	500	HIT ROCK	Aug 72 #459

					HAWKV	VOOD PROJECT	- AUGER DRI	LLING	
SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
460	5-Oct-08	TM, MJ	283000	7146585	550	RED/BROWN	1336	LOST AUGER TIP	AUG. 71 #460
461	5-Oct-08	TM, MJ	283187	7146543	660	RED/BROWN	1545	HIT ROCK	AUG 70 #461
462	5-Oct-08	TM, MJ	283192	7146401	700	LIGHT BROWN	140		Aug 65 #462

					HAWKV	VOOD PROJECT	- AUGER DRI	LLING	
SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
463	5-Oct-08	TM, MJ	283193	7146169	500	LIGHT BROWN	23	HIT ROCK	AUG 60 # 463
464	5-Oct-08	TM, MJ	282996	7145988	500	GREY/BROWN	47	HIT ROCK	Aug 56 #464
465	5-Oct-08	TM, MJ	282800	7145804	640	BROWN	254	HIT ROCK	Aug 52 #465

						VOOD PROJECT			
SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
466	5-Oct-08	TM, MJ	282804	7145998	500	LIGHT BROWN	69	HIT ROCK	AUG 57 #466
467	5-Oct-08	TM, MJ	282786	7146258	350	LIGHT BROWN	447	HIT ROCK	Aug 62 #467
468	5-Oct-08	TM, MJ	282954	7146240	350	LIGHT BROWN	90	ROCKY - HIT ROCK	Aug 61 #468

				ŀ	HAWKV	VOOD PROJECT	- AUGER DRI	LLING	
SAMPLE NUMBER	DATE	SAMPLER	AGD 66 E	AGD 66 N	DEPTH mm	COLOUR	MAGNETIC SUSCEPTIBILITY SI UNITS	REMARKS	РНОТО
469	5-Oct-08	TM, MJ	282984	7146395	600	LIGHT BROWN	77	HIT ROCK	AUG 66 #469
470	5-Oct-08	TM, MJ	282839	7146421	400	LIGHT BROWN	139	ROCKY - HIT ROCK	Ava 67 #470

EXCELLENCE IN ANALYTICAL CHEMISTRY

Australian Laboratory Services Pty Ltd

32 Shand Street Stafford Brisbane QLD 4053

Phone: +81 (7) 3243 7222 Fax: +81 (7) 3243 7218 www.alschemex.com

QC CERTIFICATE OR09018330

Project:

P.O. No.:

This report is for 9 Soil samples submitted to our lab in Orange, NSW, Australia on 19-FEB-2009.

The following have access to data associated with this certificate:

PAUL JOYCE

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	1
LOG-22	Sample login - Rcd w/o BarCode	
LEV-01	Waste Disposal Levy	•
PUL-32	Pulverize 1000g to 85% < 75 um	

Page: 1

Finalized Date: 6-MAR-2009

Account: RUGMIN

	ANALYTICAL PROCEDURE	S
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES
PGM-ICP23	Pt, Pd, Au 30g FA ICP	ICP-AES

To: RUGBY MINING PTY LIMITED
ATTN: PAUL JOYCE
1 GUNDY PLACE
WESTLEIGH NSW 2120

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

John Morgan, Laboratory Manager, Orange

EXCELLENCE IN ANALYTICAL CHEMISTRYAustralian Laboratory Services Pty Ltd

32 Shand Street Stafford Brisbane QLD 4053

Phone: +61 (7) 3243 7222 Fav: +61 (7) 3243 7218 WARR alsohamey com

Page: 2 - A Total # Pages: 3 (A - C) Finalized Date: 6-MAR-2009

	Pn	one: +61 (7) 324	13 /222 Fax	(; +61 (7) 324;	37218 WWW	aiscnemex.	.com			QC CER	TIFICA	TE OF A	NALYS	IS OR	901833	0
Sample Description	Method Analyte Units LOR	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0,005	PGM-ICP23 Pd ppm 0.001	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0,01	ME-ICP41 Cd ppm 0.6	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1
						SI	TANDARD	S								
G2000 Target Range - Lower Bo Upper Bo	und und und und und	0.050 0.045 0.053 0.903 0.841 0.949	0.058 0.050 0.068 0.986 0.892	0.051 0.048 0.055 0.735 0.682	3.3 2.9 3.9 60.9 53.3 65.5	1.85 1.68 2.06 0.21 0.17 0.23	484 434 534 5 *2 4	<10 410 20 <10 410 20	820 720 1000 80 40 70	1.0 <0.5 1.0 <0.5 <0.5	<2 <2 <4 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	0.53 0.48 0.58 0.06 0.04 0.07	7.0 6.0 5.4 <0.5 <0.5		73 83 79 5 4	316 272 354 508 436 536
100000000000000000000000000000000000000							BLANKS									
BLANK BLANK Target Range - Lower So Upper Bo		<0.001 <0.001 0.002	<0.005 <0.005 0.010	0,001 <0,001 0,002	<0.2 <0.2 0.4	<0.01	<2 ************************************		<10		<2 ************************************	<0.01 <0.01 0.02	<0.5 <0.8	<1 ************************************	<1 (1888) (1 888) (1888) (1 888)	<1 S1
						DL	JPLICATE	S								
437427 DUP Target Range - Lower Bo Upper Bo	und Process				<0.2 <0.2 <0.2 0.4	2.83 2.82 2.67 2.08	2 <2 *2	<10 <10 <10		0.6 0.6 40.5	<2 <2 •••••••••••••••••••••••••••••••••	0.27 0.27 0.25 0.29	<0.5 <0.5 <0.5	25 25 23 27	140 140 182 148	192 192 181 203
ORIGINAL DUP Target Range - Lower Bo	und	0.001 0.002 <0.001 0.002	<0.005 0.006 <0.005 0.010	0.001 <0.001 <0.001 0.002							**************************************					

EXCELLENCE IN ANALYTICAL CHEMISTRY

Australian Laboratory Services Pty Ltd

32 Shand Street Stafford Brisbane QLD 4053 Page: 2 - B

Total # Pages: 3 (A - C) Finalized Date: 6-MAR-2009

	Phone: +61 (7) 3243 7222 Fex: +61 (7) 3243 7218 www.alschemex.com									QC CERTIFICATE OF ANALYSIS OR09018330							
ample Description	Method Analyte Units LOR	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	
						81	ANDARD	S									
32000		3,72	<10	1	0.43	20	0.88	550	5	0.03	277	930	686	0.27	27	7	
Farget Range - Lower Bo	bund	3,41	<10	0.000	0.37	<10	0.80	506	4	0.02	248	840	601	0.23	19		
Upper Bo	ound	4.19	20	2	0.47	40	0.78	630	8	0.04	302	1060	739	0.31	31	10	
BM999-5		2.77	<10	1	0.06	10	0.02	61	2	0.02	4	40	502	0.29	6	- Superplaint (Interpretation	
arget Range - Lower Bo	bund	2.56	<10	<1	0.04	<10	<0.01	49	145.782.14737	<0.01	Alta S ince	20	452	0.26	<2	4.00	
Upper Bo	ound	3.15	20	2	0.07	20	0.03	71	5	0.03		50	558	0.34	8	2	
ST-321 Farget Range - Lower Bo Upper Bo ST-381 Farget Range - Lower Bo Upper Bo	ound ound															•	
ILANK		<0.01	<10	<1	<0.01	<10	BLANKS <0.01	<5	< 1	<0.01	<1	<10	<2	<0.01	< 2	< 1	
BLANK				·				•		-0101	٠,	-10	-	40.01	~	-,	
arget Range - Lower So Upper Bo		≮0.01 0.02	*10 20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<0.01 0.02	<10 20	<0.01 0,02	<5 10	. 15.753 41 5.451 13.1152 2 5.753	<0.01 0.02	ी. व ि. 2	The state of the s	15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<0.01 0.02	1945 -42	41 2	
						DL	PLICATE	s									
137427		5,28	10	1	0.06	10	0.22	346	<1	0.02	50	90	4	0.01	<2	12	
UP		5.24	10	1	0.06	10	0.21	341	<1	0.02	49	90	4	0.01	<2	12	
arget Range - Lower Bo	und	4,90	<10	<1	0.05	<10	0.10	321	98894 41 5-83	<0.01	48	80	troppi o	<0.01		10	
Upper 80	ound	6.53	20	2	0.07	20	0.24	300	20012000	Control of the second	63	100				14	
DRIGINAL DUP Target Range - Lawer Bo Upper Bo	und Sand							***************************************									

EXCELLENCE IN ANALYTICAL CHEMISTRY

Australian Laboratory Services Pty Ltd

32 Shand Street Stafford Brisbane QLD 4053 Page: 2 - C

Total # Pages: 3 (A - C) Finalized Date: 6-MAR-2009

		Phone: +6	1 (7) 324:	3 7222 Fax	c: +61 (7) 3243	7218 www	alschemex.	com			QC CERTIFICATE OF ANALYSIS	OR09018330
Sample Description	Method Analyte Units LOR		Sr Ppm 1	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 Ti ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2		
							ST	TANDARD	S			
G2000 Target Range - Lower Bo Upper Bo GBM999-5 Target Range - Lower Bo Upper Bo ST-321 Target Range - Lower Bo Upper Bo ST-381 Target Range - Lower Bo Upper Bo Upper Bo	und und und und und und		68 61 77 5 2 5		0.05 6.04 0.07 <0.01 <0.01 0.02	<10 <10 20 <10 <10 20	<10 <10 20 <10 <10 20	69 56 74 6 4 7	The second second second second	1290 1145 1400 112 97 123		
							1	BLANKS				
BLANK BLANK			<1	<20	<0.01	<10	<10	<1	<10	<2		
Taiget Range - Lower Box Upper Box	und und		() 2		40.01 40.01		<10 20	4 1		533 42 90 535 4 75		
:							DU	JPLICATE	S			
437427 DUP Target Range - Lower Box Upper Box			25 24 22 27		0.07 0.06 0.08	<10 <10 <10 20	<10 <10 <10 20	224 223 211 236	<10 <10 <10 20	17 17 14 20		
ORIGINAL DUP Target Range - Lower Bou Upper Bou	indižši suseli indižši suseli						alderen ander de de en	Millio de a de de Provincia por presencia e e	n denkejter op en geven by gewalder in den	Para de Pera de Para d		
												,

EXCELLENCE IN ANALYTICAL CHEMISTRY

Australian Laboratory Services Pty Ltd

32 Shand Street Stafford

Brisbane QLD 4053

Phone: +81 (7) 3243 7222 Fax: +61 (7) 3243 7218 www.alschemex.com

Page: 3 - A

Total # Pages: 3 (A - C)
Finalized Date: 6-MAR-2009

				OR09	
			LYSIS		

Sample Description	Method Analyte Units LOR	PGM-ICP23 Au ppm 0,001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Be ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1
						DL	PLICATE	S								
ORIGINAL DUP Target Range - Lower Bo Upper Bo	ound ound	0.002 <0.001 <0.001 0.002	0,005 0,009 <0,005 0,010	0.011 0.012 0.010 0.013												
ORIGINAL DUP Taiget Range - Lower Bo Upper Bo	pùnd 프로플링트를 pùnd 프로플링	0.001 0.001 <0.001 0.002	<0.005 <0.005 <0.005 0.010	0.001 <0.001 <0.001 0.002												

EXCELLENCE IN ANALYTICAL CHEMISTRY

Australian Laboratory Services Pty Ltd

32 Shand Street Stafford Brisbane QLD 4053

Phone: +61 (7) 3243 7222 Fax: +61 (7) 3243 7218 www.aischemex.com

Page: 3 - B

Total # Pages: 3 (A - C) Finalized Date: 6-MAR-2009

QC CERTIFICATE O	F ANALYSIS	OR09018330

Sample Description	Method Analyte Units LOR	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1
ORIGINAL DUP Target Range - Lower Bo Upper B	ound ound					DU	PLICATE	S								
ORIGINAL DUP Target Range - Lower 8- Upper 8-	ound a Argentisa															

EXCELLENCE IN ANALYTICAL CHEMISTRY

Australian Laboratory Services Pty Ltd

32 Shand Street Stafford Brisbane QLD 4053 Page: 3 - C

Total # Pages: 3 (A - C) Finalized Date: 6-MAR-2009

		Phone: +61 (7) 32	43 7222 Fax	: +61 (7) 3243	7218 www	.alschemex.	com			QC CERTIFICATE OF ANALYSIS	OR09018330
Sample Description	Method Analyte Units LOR	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 VV ppm 10	ME-ICP41 Zn ppm 2	1	
ORIGINAL DUP Target Range - Lower Bo Upper Bo	und und					DU	JPLICATE	S			
ORIGINAL DUP Terget Range - Lower Bo	und und										

EXCELLENCE IN ANALYTICAL CHEMISTRY

Australian Laboratory Services Pty Ltd

32 Shand Street Stafford Brisbane QLD 4053

Phone: +61 (7) 3243 7222 Fax: +61 (7) 3243 7218 www.alschemex.com

CERTIFICATE OR09018330

Project:

P.O. No.:

This report is for 9 Soil samples submitted to our lab in Orange, NSW, Australia on 19-FEB-2009.

The following have access to data associated with this certificate:

PAUL JOYCE

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-22	Sample login - Rcd w/o BarCode
LEV-01	Waste Disposal Levy
PUL-32	Pulverize 1000g to 85% < 75 um

Finalized Date: 6-MAR-2009

Account: RUGMIN

	ANALYTICAL PROCEDURI	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES
PGM-ICP23	Pt, Pd, Au 30g FA ICP	ICP-AES

To: RUGBY MINING PTY LIMITED ATTN: PAUL JOYCE
1 GUNDY PLACE

WESTLEIGH NSW 2120

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

John Morgan, Laboratory Manager, Orange

EXCELLENCE IN ANALYTICAL CHEMISTRY

Australian Laboratory Services Pty Ltd

32 Shand Street Stafford Brisbane QLD 4053

Phone: +61 (7) 3243 7222 Fax: +61 (7) 3243 7218 www.alschemex.com

Page: 2 - A
Total # Pages: 2 (A - C)

Finalized Date: 6-MAR-2009

CERTIFICATE OF ANALYSIS OR09018330

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Gr ppm 1
437348		0.94	0.003	0.005	0.004	<0.2	2.10	<2	10	380	0.8	<2	2.98	<0.5	23	237
437356		1.02	0.001	0.007	0.006	0.2	2.56	<2	10	100	0.8	<2	0.45	<0.5	22	208
437364		0.92	0.001	0.007	0.006	< 0.2	1,92	<2	<10	60	<0.5	<2	0.53	<0.5	10	59
437409		1.06	0.005	0.011	0.003	<0.2	2.50	<2	<10	80	0.6	<2	0.24	<0.5	37	119
437410		0.94	0.003	0.012	0.007	<0.2	2,11	2	<10	110	0.7	2	0.15	<0.5	46	247
437411		0.94	0.030	0.015	0.010	<0.2	2.62	12	<10	140	0.5	<2	0.43	<0.5	24	141
437415		1.10	0.013	0.026	0.019	<0.2	4.35	<2	<10	130	<0.5	<2	0.98	<0.5	44	272
437424		1.12	0.014	0.027	0.009	<0.2	2.82	2	<10	140	<0.5	<2	0.16	<0.5	80	346
437427		0.92	0.018	0.013	0.013	< 0.2	2.83	2	<10	140	0.6	<2	0.27	<0.5	25	140

EXCELLENCE IN ANALYTICAL CHEMISTRY
Australian Laboratory Services Pty Ltd

32 Shand Street Stafford Brishage Ot D 4053

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 6-MAR-2009

	1	Phone: +61 (7) 324	43 7222 Fax	:: +61 (7) 3243	7218 www.	.alschemex.	com	L		CERTI	FICATE	OF ANA	ALYSIS	OR09	18330	
ample Description	Method Analyte Units LOR	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP4* Sb ppm 2
37348 37356 37364 37409 37410		60 104 52 209 186	8.06 8.24 2.73 9.75 12.50	10 10 10 10 10	1 1 1	0.12 0.10 0.04 0.10 0.06	10 10 <10 10	0.50 0.14 0.37 0.12 0.07	984 1285 268 533 840	<1 <1 <1 <1 <1	0.03 0.01 0.05 0.01 0.01	81 48 12 34 36	200 500 540 210 190	5 7 <2 4	0.02 0.02 0.01 0.01 0.01	<2 <2 <2 <2 <2
437411 437415 437424 437427		272 582 373 192	8.27 10.90 19.7 5.28	10 10 20 10	1 1 <1 1	0.11 0.06 0.05 0.06	10 <10 <10 10	0.64 0.08 0.11 0.22	306 600 1870 346	<1 <1 <1 <1	0.03 0.11 0.01 0.02	66 54 72 50	70 160 130 90	2 2 2 2 4	0.01 0.01 0.01 0.01 0.01	<2 <2 <2 <2 <2

Sample Description

437348

437356

437364

437409

437410

437411

437415

437424

437427

Method Analyte Units

LOR

ALS Chemex

99

56

31

22

17

45

87

17

25

EXCELLENCE IN ANALYTICAL CHEMISTRY

Australian Laboratory Services Ptv Ltd

32 Shand Street Stafford Brisbane QLD 4053

15

24

7

11

12

13

8

10

12

Phone: +81 (7) 3243 7222 Fax: +61 (7) 3243 7218 www.alschemex.com

<20

<20

<20

<20

<20

<20

<20

<20

<20

0.07

0.07

0.08

0.18

0.25

0.10

0.18

0.55

0.07

<10

<10

<10

<10

<10

<10

<10

<10

<10

<10

<10

<10

<10

<10

<10

<10

<10

<10

226

220

112

608

781

460

704

1525

224

Page: 2 - C

Total # Pages: 2 (A - C) Finalized Date: 6-MAR-2009

CERTIFICATE OF ANALYSIS OPIGG18330

Account: RUGMIN

Pho	ne: +01 (/) 324	3 / 222 FBX	(; TO ! (7) 3243	7210 WWW	.alschichtick.	20111	L		CERTIF	FICATE OF ANALTSIS ONUSUTUSSU	
	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41		
	Sc	Sr	Th	Ti	TI	υ	٧	w	Zn		
	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm		
	1	1	20	0.01	10	10	1	10	2		

<10

<10

<10

<10

<10

<10

<10

<10

<10

26

43

20

23

19

32

20

28

17

EXCELLENCE IN ANALYTICAL CHEMISTRY

Australian Laboratory Services Pty. Ltd.

32 Shand Street Stafford Brisbane QLD 4053

Phone: +61 (7) 3243 7222 Fax: +61 (7) 3243 7218 www.alschemex.com

CERTIFICATE OR09018269

Project:

P.O. No.:

This report is for 110 Soil samples submitted to our lab in Orange, NSW, Australia on 19-FEB-2009.

The following have access to data associated with this certificate:

PAUL JOYCE

CHRIS TORREY

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
LEV-01	Waste Disposal Levy	
PUL-32	Pulverize 1000g to 85% < 75 um	

Page: 1

Finalized Date: 18-MAR-2009

Account: RUGMIN

	ANALYTICAL PROCEDURE	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP43	Up to 18 element add-on AR Au	ICP-AES
ME-OG46	Ore Grade Elements - AquaRegia	ICP-AES
Fe-OG46	Ore Grade Fe - Aqua Regia	VARIABLE
Au-TL43	Trace Level Au - 25g AR	ICP-MS

To: RUGBY MINING PTY LIMITED ATTN: PAUL JOYCE 1 GUNDY PLACE WESTLEIGH NSW 2120

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Shaun Kenny, Brisbane Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY

Australian Laboratory Services Pty. Ltd.

32 Shand Street Stafford Brisbane QLD 4053

Page: 2 - A Total # Pages: 4 (A - B) Finalized Date: 18-MAR-2009

(//		Brisbane QLD 405; Phone: +61 (7) 324		c: +61 (7) 3245	37218 www	alschemex.	com			CERTI	FICATE	OF AN	ALYSIS	OR09	018269	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-TL43 Au ppm 0.001	ME-ICP43 Ag ppm 0.2	ME-ICP43 As ppm 1	ME-ICP43 Ba ppm 10	ME-ICP43 Bi ppm 2	ME-ICP43 Ca % 0.01	ME-ICP43 Cd ppm 1	ME-ICP43 Co ppm 1	ME-ICP43 Cu ppm 1	ME-ICP43 Fe % 0.01	ME-ICP43 Mg % 0.01	ME-ICP43 Mn ppm 5	ME-ICP43 Mo ppm 1	ME-ICP43 NI ppm 1
437342		0.92	0.001	0.2	2	150	<2	0.73		-				_		
437343		0.96	0.001	0.2	1	440	<2	2.90	<1 <1	34 25	57 37	7.43	0.32	1905	<1	82
437344		0.98	0.001	0,2	1	570	<2	3.05	<1	25 25	37 46	7.82 6.85	0.86	1065	<1	87
437345		0.98	0.001	<0.2	2	390	<2	0.43	<1	42	5 1	10.90	0.75 0.54	1395 1840	<1 1	74 89
437348		0.98	0.001	0.2	< 1	660	<2	3.17	<1	26	45	6.61	0.75	1250	< 1	67
437347		1.06	0.002	0.4	<1	170	<2	9.30	<1	9	78	3.78	3,71	888	<1	29
437349		0.98	0.001	<0.2	1	170	<2	0.27	<1	27	75 71	10.40	0.16	2950	1	28 54
437350		1.00	0.001	<0.2	2	70	< <u>2</u>	0.50	<1	17	77	13.50	0.16	1205	4	41
437351		0.90	0.001	<0.2	1	80	<2	0.25	<1	39	72	10.65	0.08	1725	i	60
437352	·	0.96	0.001	<0.2	2	70	<2	0.13	<1	36	76	9.65	0.05	2360	1	50
437353		0.88	0.008	<0.2	1	90	<2	0.35	<1	33	82	7.66	0.16	2200	1	53
437354		0.94	0.002	<0.2	2	50	<2	0.23	<1	29	76	10,05	0.07	1925	1	55
437355		0.88	0.001	<0.2	2	70	<2	0.23	<1	14	54	9,14	0.09	664	1	35
437357 437358		0.94	0.003	<0.2	1	290	<2	0.21	<1	116	111	8.71	0.17	5840	1	65
		0.94	0.002	<0.2	3	180	<2	0.70	<1	14	68	4.57	0.29	590	<1	23
437359		0.78	0,002	0.2	1	140	<2	0.32	<1	18	71	5,53	0.25	748	<1	18
437360		0.96	0.001	<0.2	1	170	<2	0.46	<1	60	52	5.24	0.31	820	<1	32
437361 437362		0.88	0.002	<0.2	1	110	<2	0.74	<1	24	104	7.58	0.23	666	<1	7
437363		0.76	0.001	<0.2	1	100	<2	0.33	<1	23	60	5.87	0.21	986	<1	12
		0.74	0.001	<0.2	1	160	<2	0.85	<1	38	70	5,90	0.64	1175	<1	87
437365		0.88	0.001	<0.2	1	70	<2	0.32	<1	17	18	4.40	0.16	480	<1	21
437366 437367		0.86	0.001	<0.2	1	130	<2	0.60	<1	14	69	4.29	0.31	418	<1	13
437368		0.86	0.001	<0.2	1	200	<2	0.33	<1	51	137	8,86	0.18	2290	<1	22
437370		0.96 0.88	0.002	<0.2	2	40	<2	1.40	<1	4	194	7,42	0.46	236	<1	10
			0.001	<0.2	1	400	<2	0.31	<1	255	241	5,46	0.24	4800	<1	68
437371 437372		1.00	0.004	0,3	1	160	<2	1.69	<1	31	181	10.70	0.21	318	<1	13
437373		0.86	0.004	<0.2	2	330	<2	0.54	<1	276	658	9.10	0.30	4290	<1	90
437374		0.96	0.001	<0.2	1 .	150	<2	0.14	<1	50	66	2.07	0.15	830	<1	19
437375		0.62 0.62	0.005 0.005	<0.2 <0.2	2 1	180	2	0.56	<1	83	212	14.65	0.42	1475	<1	29
437376					·	190	2	0.32	<1	56	190	8.99	0.26	1225	<1	40
437377		0.88	0.001	<0.2	2	160	<2	0.39	<1	28	66	8.54	0.28	1205	<1	25
437378		0.86 0.90	0.006	<0.2	2	140	<2	1.82	<1	42	269	9.71	0.54	758	<1	42
437379		1.00	0.001 0.002	<0.2 <0.2	1 2	130	<2	0.82	<1	42	52	4.48	0.48	1320	<1	87
437381		0.82	0.002	<0.2	2 <1	110 140	<2 <2	0.19 0.80	<1 <1	24 40	54 56	9,33 4,79	0.13 0.49	775 1375	<1 -4	34 72
437382	***************************************	0.94	0.001	<0.2	2										<1	73
437383		1.00	0.007	<0.2	2	140 180	<2	0.59	<1	40	66	6.00	0.46	1300	<1	69
437384		0.90	0.002	<0.2	1	200	<2 <2	0.13	<1	88 45	137	11.20	0.06	1645	<1	32
437385		1.02	0.005	<0.2	ż	80	2	0.17 0.11	<1 <1	45 43	66	9.77	0.09	1165	<1	24
437386		0.98	0.003	<0.2	1	160	<2	0.11	<1	43 35	130 71	11.65 12.15	0.05 0.05	689 440	<1 <1	23 15

437374

437375

437376

437377

437378

437379

437381

437382

437383

437384

437385

437386

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

Australian Laboratory Services Pty. Ltd.

32 Shand Street Stafford Brisbane QLD 4053

210

190

210

120

170

300

230

300

220

300

240

140

<1

5

2

6

6

8

6

7

6

0.01

0.01

0.01

0.01

0.01

0.01

0.02

0,02

0.01

<0.01

<0.01

<0.01

<2

<2

<2

2

<2

<2

<2

<2

<2

3

<2

2

60

37

30

47

39

32

41

40

21

19

19

17

Phone: +61 (7) 3243 7222 Fax: +61 (7) 3243 7218 www.alschemex.com

Page: 2 - B

Total # Pages: 4 (A - B)
Finalized Date: 18-MAR-2009

CERTIFICATE OF ANALYSIS OR09018269

		ME-ICP43	ME-ICP43	ME 10042	ME 100/0	ME-ICP43	5-0040
	Method	ME-ICP43	ME-ICP43 Pb	ME-ICP43 S	ME-ICP43	ME-ICP43 Zn	Fe-OG46
	Analyte Units	ppm	ppm	%	Sb ppm		Fe %
Sample Description	LOR	10	ρριιι 1	70 0.01	ppin 2	ppm 1	% 0.01
			 	0.01	£		V.U I
437342		490	9	0.02	<2	50	
437343		210	7	0.03	<2	31	
437344		260	6	0,05	<2	36	
437345		290	7	0.02	<2	35	
437346		200	5	0.04	<2	35	
437347		160	4	0.02	<2	23	
437349		480	10	0.02	<2	55	
437350		580	8	0.02	4	38	
437351		450	9	0.01	3	51	
437352		550	10	0.01	<2	50	
437353		600	10	0.02	<2	52	
437354		640	8	0.03	<2	49	
437355		360	7	0.01	<2	30	
437357		440	9	0.01	<2	107	
437358		190	9	0.01	<2	76	
437359		230	4	0.01	<2	26	
437360		300	2	0.01	<2	58	
437361		2300	3	0.01	<2	27	
437362		280	4	0.01	<2	23	
437383		190	5	0.01	<2	42	
437365		130	4	0.01	<2	11	
437366		430	3	0.02	<2	21	
437367		310	5	0.01	<2	58	
437368		210	1	0.03	<2	11	
437370		100	4	0.01	<2	121	
437371		120	1	0.01	<2	19	
437372		240	2	0.01	<2	155	
437373		50	3	<0.01	<2	29	

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

<0.2

2

60

<2

0.56

<1

46

214

13.30

0.95

1165

<1

47

Australian Laboratory Services Pty. Ltd.

32 Shand Street Stafford Brisbane QLD 4053 Page: 3 - A

Total # Pages: 4 (A - B) Finalized Date: 18-MAR-2009 Account: RUGMIN

		Phone: +61 (7) 324	3 7222 Fax	c +61 (7) 3243	37218 www	.alschemex.	com			CERTI	FICATE	OF ANA	ALYSIS	OR09	018269	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-TL43 Au ppm 0.001	ME-ICP43 Ag ppm 0.2	ME-ICP43 As ppm 1	ME-ICP43 Ba ppm 10	ME-ICP43 Bi ppm 2	ME-ICP43 Ca % 0.01	ME-ICP43 Cd ppm 1	ME-ICP43 Co ppm 1	ME-ICP43 Cu ppm 1	ME-ICP43 Fe % 0.01	ME-ICP43 Mg % 0.01	ME-ICP43 Mn ppm 5	ME-ICP43 Mo ppm 1	ME-ICP43 Ni ppm 1
437387		0.92	0.003	<0.2	1	160	<2	0,24	<u>,</u> <1	68	·				•	
437388		0.94	0.002	<0.2	1	100	<2	0.27	<1	68	88 76	7.68 8.51	0.19 0.16	1610 1835	<1 1	31
437389		0.94	0.002	<0.2	1	80	<2	0.11	<1	23	69	6.27	0.05	407	<1 <1	21 18
437390		0.92	0.004	0.2	1	210	<2	0.49	<1	43	249	9.86	0.05	1530	<1	39
437391		0.98	0.019	<0.2	3	420	<2	0.89	<1	241	713	13.60	0.40	1530	<1	136
437392		0.94	0.003	<0.2	2	180	2	0.03	<1	45	250	12.75	0.05	1645	<1	46
437393		1.06	0.002	<0.2	1	200	< <u>2</u>	0.05	<1	56	115	7.73	0.05	2470	<1	30
437394		1.22	0.007	<0.2	5	90	<2	0.03	<1	33	191	15.25	0.03	878	1	50
437395		1.10	0.003	0.2	1	100	<2	0.41	<1	20	527	7.12	0.44	310	<u>,</u>	19
437396		0.88	0.006	<0.2	1	670	<2	0.35	<1	53	195	6.92	0.51	862	<1	96
437397		0.92	0.008	0.2	1	120	<2	0.38	<1	23	67	6.80	0.34	613	<1	23
437398		0.94	0.020	<0.2	1	60	<2	0.21	<1	23	242	6.21	0.20	330	<1	31
437399		1.00	0.005	<0.2	<1	120	<2	0.27	<1	20	101	8.48	0.48	499	<1	36
437400		0.96	0.004	<0.2	1	110	<2	0.31	<1	21	62	6.71	0.16	711	<1	15
437401		1.06	0.002	<0.2	1	130	<2	0.29	<1	25	55	7.33	0.17	811	<1	22
437402		0.98	0.002	<0.2	1	70	<2	0.13	<1	34	75	9.59	0.05	687	<1	22
437403		1.08	0.003	<0.2	1	60	<2	0.11	<1	28	62	10.45	0.03	434	<1	16
437404		1.16	0.003	<0.2	2	80	< 2	0.17	<1	31	96	12.60	0.06	684	<1	
437405		1.24	0.003	<0.2	2	80	<2	0.09	<1	37	105	14.10		707	<1	16
437406		1.08	0.002	<0.2	2	100	√2	0.13	<1	45	92	10.65	0.05 0.06	903	<1	15 21
137407	***************************************	1.08	0.002	<0.2	<1	60	<2	0.08	<1	30						
437408		0.90	0.002	<0.2	2	90	<2	0.08	<1		75 440	11.65	0.04	436	<1	16
437412		1.08	0.003	<0.2	2	120	<2 <2	0.51	<1	21	113	12.15	0.04	700	<1	25
437413		1.08	0.004	0.2	-	110	<2	0.87	<1	20	149	6.25	0.34	457	<1	17
137414		1.10	0.022	0.3	ż	80	<2	1.50	<1	22 31	106 662	3.90 8.15	0,42 0,22	539 278	<1 <1	50 13
37416		0.98	0.032	0,2	2	130	<2	0.52							•	
37417		1.16	0.020	<0.2	-	90	3		<1	53	1825	12.40	1.26	521	<1	129
137418		1.12	0.013	0.2	3	140	3 < 2	0.31	<1	71	530	>20.0	0.27	1255	<1	92
137419		1.12	0.008	<0.2	1	90	<2 <2	0.52 0.48	<1	66	549	18.90	0.29	632	<1	23
137420		1.24	0.002	<0.2	1	30	<2	0.46	<1 <1	26 12	455 50	10.10 2.98	0.32 0.07	577 150	<1 <1	27 9
37421		1.08	0.003	<0.2	2	280	<2	0.63	*							_
37422		1.06	0.003	<0.2	1	120	<2		<1	70	232	11.55	0.46	626	<1	44
37423		1.02	0.001	<0.2	, 1	140	<2 <2	0.06 0.20	<1 <1	38	130	11.70	0.07	1140	<1	28
37434		1,00	0.002	<0.2	i	170	<2 <2	0.20	<1 <1	50	89 75	11.55	0.09	801	<1	31
137435		1.08	0.010	0.5	i	90	2	3.88	<1	31 35	75 168	9.27 13.55	0.39 0.58	419 155	<1 <1	14 33
37436		1.06	0.006	0.4	3	130	- <2									
37437		1.14	0.005	0.2	9	170	<2 <2	1.37	<1	28	164	9.54	0.30	315	<1	28
37438		0.98	0.006	0.2	1	240	<2 <2	1.04	<1	12	5 7	2.89	0.50	276	<1	34
137439		1.02	0.002	<0.2	1	100	<2	1.30	<1	13	51	2.84	0.43	241	<1	24
37440		1.08	0.002	~0,2	'	100	~2	0.72	<1	17	90	6.40	0.16	412	<1	12

Sample Description

Method Analyte Units

LOR

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

<1

<1

<1

Australian Laboratory Services Pty, Ltd.

32 Shand Street Stafford Brisbane QLD 4053

0.01

< 0.01

< 0.01

0.01

0.02

0.01

0.01

0.01

0.01

< 0.01

<0.01

<0.01

0.01

< 0.01

< 0.01

<0.01

< 0.01

< 0.01

< 0.01

0.01

0.01

0.01

<0.01

<0.01

< 0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

< 0.01

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

15.85

25.6

19.10

Page: 3 - B

Total # Pages: 4 (A - B) Finalized Date: 18-MAR-2009

Pho	ine: +61 (7) 324	13 7222 Fax	:: +61 (7) 3243	7218 www	.alschemex.c	com	CERTIFICATE OF ANALYSIS OR09018269
	ME-ICP43 P ppm 10	ME-ICP43 Pb ppm 1	ME-ICP43 S % 0.01	ME-ICP43 Sb ppm 2	ME-ICP43 Zn ppm 1	Fe-OG48 Fe % 0.01	
	220 250	6 7	0.01 0.01	2 <2	29 30		
	110	4	0.01	<2	13		
	120	5	0.01	2	38		
	110	<1	0.02	<2	113		

EXCELLENCE IN ANALYTICAL CHEMISTRY

Australian Laboratory Services Pty, Ltd.

32 Shand Street Stafford Brisbane QLD 4053

Page: 4 - A

Total # Pages: 4 (A - B) Finalized Date: 18-MAR-2009

Account: RUGMIN

	P	hone: +61 (7) 324	13 7222 Fax	: +6 1 (7) 3243	7218 www	alschemex.	com			CERTI	FICATE	OF AN	ALYSIS	OR090	18269	
Sample Description	Method Analyte Units LOR	WEI-21 Reavd Wt. kg 0.02	Au-TL43 Au ppm 0.001	ME-ICP43 Ag ppm 0,2	ME-ICP43 As ppm 1	ME-ICP43 Ba ppm 10	ME-ICP43 Bi PPM 2	ME-ICP43 Ca % 0.01	ME-ICP43 Cd ppm 1	ME-ICP43 Co ppm 1	ME-ICP43 Gu ppm 1	ME=ICP43 Fe % 0.61	ME-ICP43 Mg % 0.01	ME-ICP43 Mn ppm 5	ME-ICP43 Mo ppm 1	ME-ICP43 Ni ppm 1
437441 437442 437443 437444 437445		0.94 1:04 0.66 1:08 0.96	0.002 0.003 0.003 0.002	<0:2 <0:2 <0:2 <0:2	2 1 1 3	300 80 120 140	<2 <2 <2 <2	0.79 0.13 0.18 0.09	<1 <1 <1 <1	44 36 36 82	118 109 129 111	8.26 11.00 10.40 10.90	0.40 0.08 0.13 0.08	950 836 767 1345	€1 €1 €1	31 26 28 29
437446 437447 437448 437449 437450		1.00 1.26 0.94 1.02	0.002 0.003 0.002 0.003 0.001	<0.2 <0.2 <0.2 <0.2 <0.2	1 3 3 2	130 510 410 210 620	<2 <2 <2 <2 <2 <2	0.11 0.27 0.02 0.27 0.13	41 41 41 41	47 51 34 42 58	110 188 223 179 128	7.70 18.50 7.20 10.25	0.05 0.27 0.04 0.31 0.10	794 1090 2190 1635 3980	<1 <1 1 <1 1	26 41 44 40 38
437451 437452 437453 437454 437454		0.92 1.00 0.92 1.02 1.04 1.12	0.002 0.003 0.006 0.002 0.004 0.001	<0,2 <0,2 <0,2 <0,2 <0,2 <0,2	1 2 2 1 2	90 380 200 1400 110 70	<2 <2 <2 <2 <2 <2	0.10 0.34 0.39 0.17 0.32 0.67	<1 <1 <1 <1 <1	38 51 71 313 67	102 414 311 591 133	9.87 7.09 13.00 12.10 3.82	0.06 0.45 0.27 0.28 0.24	2030 1270 7500 906	61 61 61 61 61	24 55 68 148 32
437458 437457 437458 437458 437469		1.12 1.04 1.06 1.30	0,003 0,006 0,002 0,003	<0,2 0.2 <0,2 <0,2	1 2 4 9	80 140 180 230	<2 <2 <2 <2 2	0.49 1.05 0.26 0.01	<1 <1 <1 <1	22 27 43 28 80	152 225 80 94	9.84 7.24 9.30 9.82 18.15	0.39 0.29 0.64 0.31 0.06	494 542 800 184 1338	1 <1 <1 <1 2	25 48 38 62
437481 437482 437483 437484		1,16 1,20 1,04 1,20 1,10	0:002 0:002 0:035 0:009 0:004	<0.2 <0.2 0.2 0.2 0.2	2 2 2	80 80 360 110 190	<2 <2 <2 <2 <2 <2	0.03 0.05 0.44 0.19 0.27	<1 <1 <1 <1	29 28 42 6 39	65 912 8 48	9,81 8,07 6,88 2,98 2,90	0.04 0.04 1.34 0.67 0.64	765 725 1360 141 1230	1 1 ≪1 1	26 21 133 33 30
437466 437467 437467 437468 437469 437470		1.02 1.18 1.32 1.22 1.22	0.005 0.001 0.001 0.003 0.001 0.002	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	2 <1 <1 2	140 120 80 140 80 210	<2 <2 <2 <2 <2 <2	0.91 0.19 0.34 0.21 0.06 0.24	<1 <1 <1 <1 <1	36 31 9 48 8	155 21 17 35 24	8.03 2.02 2.65 1.67 1.80	0.74 0.35 0.66 0.23 0.25	690 1015 251 1160 127	<1 <1 <1 <1 <1	40 19 14 20 8

EXCELLENCE IN ANALYTICAL CHEMISTRY

Australian Laboratory Services Pty. Ltd.

32 Shand Street Stafford Brisbane QLD 4063 Phone: +61 (7) 3243 7222 Fax: +61 (7) 3243 7218 www.alschemex.com

Total # Pages: 4 (A - B) Finalized Date: 18-MAR-2009

(AL3		Brisbane QLD 40 Phone: +81 (7) 3	199 249 7222 Fab	e +61 (7) 324:	7218 www	alschemex.	com	CERTIFICATE OF ANALYSIS OR09018269
Sample Description	Method Analyte Units LOR	ME-ICP43 P ppm 10	ME-ICP43 Pb ppm 1	ME-ICP43 8 % 0.01	ME-ICP43 8b ppm 2	ME-ICP43 Zn ppm 1	Fe-0G48 Fe % 0.01	
437441 437442 437443 437444 437448		110 210 150 220 150	6 6 6 6	0,01 0,01 <0.01 0,01 0,01	€2 €2 €2 €2 2	27 22 18 16 16		
437448 437447 437448 437449 437450		180 360 320 300 230	7 15 7 14 8	0,02 0,03 0,01 0,01 0,01	€2 2 €2 €2 €2	57 17 56 25	15.55	
437451 437452 437453 437454 437455		130 450 320 150 200	6 4 10 5 4	0.01 0.01 0.01 0.01 0.01	<2	67 72 110 44 32	lee Partier 27 au	
437456 437457 437458 437459 437460		500 290 160 380 250	2 4 7 30 15	0.02 0.02 0.01 0.01 0.01	€2 €2 €2 €3 €	32 53 59 14	14.30	
437461 437462 437463 437464 437465		180 670 500 210 190	11 4 3 8 4	0.01 0.01 0.02 0.01 0.01	2 <2 <2 <2 <2	12 131 41 38 42		
437466 437467 437468 437469 437470		250 450 180 70 270	4 2 2 4 3	0,01 0,01 0,01 €0,01 €0,01	€2 €2 €2 €2	29 25 34 14 63		

EXCELLENCE IN ANALYTICAL CHEMISTRY

Australian Laboratory Services Ptv. Ltd.

32 Shand Street Stafford Brisbane QLD 4053

Phone: +61 (7) 3243 7222 Fax: +61 (7) 3243 7216 www.alschemex.com

QC CERTIFICATE OR09018269

Project:

P.O. No.:

This report is for 110 Soil samples submitted to our lab in Orange, NSW, Australia on 19-FEB-2009.

The following have access to data associated with this certificate:

PAUL JOYCE

CHRIS TORREY

	SAMPLE PREPARATION	-
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Red w/o BarCode	
LEV-01	Waste Disposal Levy	
PUL-32	Pulverize 1000g to 85% < 75 um	

Finalized Date: 18-MAR-2009

Account: RUGMIN

	ANALYTICAL PROCEDURES								
ALS CODE	DESCRIPTION	INSTRUMENT							
ME-ICP43	Up to 18 element add-on AR Au	ICP-AES							
ME-OG46	Ore Grade Elements - AquaRegia	ICP-AES							
Fe-OG46	Ore Grade Fe - Aqua Regia	VARIABLE							
Au-TL43	Trace Level Au - 25g AR	ICP-MS							

To: RUGBY MINING PTY LIMITED ATTN: PAUL JOYCE

1 GUNDY PLACE WESTLEIGH NSW 2120

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Shaun Kenny, Brisbane Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRYAustralian Laboratory Services Pty. Ltd.

32 Shand Street Stafford Brisbane QLD 4053 Page: 2 - A

Total # Pages: 3 (A - B) Finalized Date: 18-MAR-2009

	CHE	ine: =51 (/) 32	49 7222 Fax	# +61 (7) 3248	7218 www.	.alachemex.	com	L		QC CER	TIFICAT	E OF A	NALYS	S OR	901826	9
	Method Analyte Units LOR	Au-TL43 Au ppm 0.001	ME-ICP43 Ag ppm 0.2	ME-ICP43 As ppm 1	ME-ICP43 Ba PPM 10	ME-ICP43 Bi ppm 2	ME-ICP43 Ca % 0,01	ME-ICP43 Cd ppm 1	ME-ICP43 Co ppm 1	ME-ICP43 Cu ppm 1	ME=ICP43 Fe % 0.01	ME-ICP43 Mg % 0.01	ME-ICP43 Mn ppm: 6	ME-ICF43 Me ppm 1	ME-ICP43 Ni ppm 1	ME-ICP43 P PPM 10
						ST	ANDARD	S				Manual Common Ma				
3BM302-10																
Target Range - Lower Bou	nd															
Upper Bou	nd															
3BM306-11																
larget Range - Lower Bou																
Upper Bou 38M999-5	nd															
38M999-5		0.526	>40	2	80	€2	0.04	€1	3	474	2.78	0.01	86	4	5	40
18M 999- 5		0.559 0.552	>40 >40	5	60	≪2	0.05	≪1	3	488	2.92	0.01	84	4	3	40
IBM999-5		0.608	>40 >40	2	60 60	≼2 2	0.04	€1	2	482	2.84	0.01	63	4	4	40
arget Range - Lower Bour	ed	6.606	53.3	2	30	2 €2	0.04 0.04	41 National 20 00 - Produce	4	508	3.09	0.04	86	3	5	50
Upper Bour			40.0	*	70	4	0.07	<1 2	4	436 638	2,56	€0.01	49		3	30
T-345		0.048	1.1	<1 × 1	20	3	0.29	4	17	49	5.15 1.35	0.03	71	The American	5	50
T-345		0.054	1.2	1	20	4	0.32	4	10	79 52	1,44	0.08 0.09	140° 147	₽ •	35 37	290 300
T-345	l	0.054	1.2	1	20	3	0.33	i	19	55	1,51	0.10	153	8 8	97 38	320
IT-345		0.055	1.3	1	20	3	0.33	1	19	53	1.49	0.10	155	ā	38	310
arget Range - Lower Bour		0.047	0.8	≪1	₹10	€2	0.24	4 1	10	47	1,20	0.07	124	6	31	260
Upper Sour	nd	0.063	1.4	2	30	4	0.92	2	21	60	1.48	0,11	102	10	41	340
						E	BLANKS									
ILANK		<0.001	≪0,2	≪1	≪10	€2		-4					_			
LANK		<0.001	<0.2	«1	<10 <10	<2 ≤2	<0.01 <0.01	≼1 ≪1	€ † € 1	≪1	0.01	≪0.01	≪5	€1	€1	€10
LANK		<0.001	<0.2	€1	€10	<2	<0.01 <0.01	≪1 ≪1	₹1 €1	€1 €1	≪0.01 0.01	<0.01 <0.01	≪§ ≪£	<1 ≼1	≪1	<10
LANK		<0.001	<0.2	<1	≪10	€2	<0.01	<1 ≪1	41	<1 €1	0.01 ≪0.01	≈0.01 ≪0.01	*8 € 5	₹1	€1 €1	<10 <10
LANK						_	0.07		-,	~,	46:81	48:01	48	1	æ i	< 10°
arget Range - Lower Bour		<0.001	<0.2	41	×10	<2	<0.01	81	« 1	« 1	<0.01	≪0.01	<5	- 41	41	€10
Upper Bour	nd	0.002	0.4	2	20	4	0.02	2	2	2	0.02	0.02	10	2	2	

EXCELLENCE IN ANALYTICAL CHEMISTRY

Australian Laboratory Services Pty. Ltd.

32 Shand Street Stafford Brisbane QLD 4053 Page: 2 - B

Total # Pages: 3 (A - B) Finalized Date: 18-MAR-2009

### STANDARDS STANDARDS S.98			Phone: +61 (7) 32		: +61 (7) 3243	7218 www.	alschemex.com	QC CERTIFICATE OF ANALYSIS OR09018269
Second	Sample Description	Analyte Unite	Pb ppm	5 %	de meq	Zn ppm	Fe %	
Target Range - Lover Bound GBM-99-5 Target Range - Lover Bound ABS 0,28							STANDARDS	
GBM999-5	Target Range - Lower Bo Upper Bo GBM305-11 Target Range - Lower Bo	ound ound					6.08 6.12	
Target Range - Lower Bound ST-346 ST-345 ST	GBM999-5 GBM999-5 GBM999-5		500 500	0.29 0.29	-	111 110		
\$T-345 \$T	Target Range - Lower Bo Upper Bo		463 865	0,26 0,34	- 2 - 1	98 122		
Second S	ST-345 ST-345	ogganera. Der der vocationer	89 93 90	0.03 0.03 0.03	≤2 ≤2 ≤2	81 84 85		
BLANK	Upper Bo	und und						
BLANK							BLANKS	
BLANK								
BLANK	BLANK		1 '					
Target Range - Lower Bound <1 <0.01 <2 <1 <0.01	BLANK		€1	<0.01	<2			
	Target Range - Lower Box	und	«1	<0.01	€2	æ1		
	Upper Boi	und .	2	0.02				
			ĺ					
			1					

EXCELLENCE IN ANALYTICAL CHEMISTRYAustralian Laboratory Services Pty. Ltd.

32 Shand Street Stafford Brisbane QLD 4053

Page: 3 - A

Total # Pages: 3 (A - B) Finalized Date: 18-MAR-2009

	soane QLU 408 one: +61 (7) 32		; +61 (7) 3243	7216 www	.alachemex.	com		QC CERTIFICATE OF ANALYSIS OR09018269								
Method Analyte Units Sample Description LOR	Au-TL43 Au ppm 0.001	ME-ICP43 Ag ppm 0,2	ME-ICP43 As ppm 1	ME-ICP43 Ba ppm 10	ME-ICP43 Bi ppm 2	ME-ICP43 Ca % 0.01	ME-ICP43 Cd ppm 1	ME-ICP43 Co ppm 1	ME-ICP43 Cu ppm 1	ME-ICP43 Fe % 0.01	ME-ICP43 Mg % 6.01	ME-ICP43 Mn ppm: 5	ME-ICF43 Ma ppm 1	ME-ICP43 NI ppm 1	ME-ICP43 P ppm 10	
					DŲ	PLICATE	8				****					
437352 DUP Target Range - Lower Sound Upper Bound	0.001 0.001 <0.001 0.002	<0.2 <0.2 <0.2 0.4	2 2 *1	70 70 50 90	<2 <2 <2	0.13 0.13 0.11 0.11	<1 <1 <1 2	36 35 32 39	76 77 70 83	9.65 9.70 8.94 10.40	0,05 0,08 0,04 0,07	2360 2320 2160 2520	1 1	50 50 48	550 650 500 600	
437375 DUP Target Range - Lower Bound Upper Bound	0.005 0.005 0.004 0.006	<0.2 <0.2 <0.2 <0.2	1 1 *1 2	190 180 180 210	2 2 2 4	0.32 0.30 0.28 0.34	<1 <1 <1 2	56 54 50 60	190 192 176 208	8.99 8.83 8.23	0.28 0.28 0.23 0.29	1225 1145 1090 1280	<1 <1 <1	40 39 36 43	190 180 180 180	
437391 DUP Target Range - Lower Bound Upper Bound	0.019 0.018 0.016 0.021	<0.2 0.2 <0.2 0.4	3 1 41	420 410 370 460	<2 <2 <2 <2	0.89 0.87 0.80 0.96	≤1 ≤1 €1 2	241 238 220 257	713 717 680 770	13.60 13.15 12.35 14.40	0.40 0.41 0.36 0.45	1530 1535 1415 1650	<1 <1 *1	136 137 125	110 110 90 190	
437414 DUP Target Range - Lower Bound Upper Bound	0.022 0.020 0.018 0.024	0.3 0.4 <0.2 0.4	2 1 1	80 80 80 100	<2 <2 <2 <4	1.50 1.37 1.32	≪1 ≪1 ≪1 2	31 28 27 33	662 608 696 684	8,15 5,00 6,15 6,00	0.22 0.21 0.19 0.24	278 262 244 284	<1 <1 <1 2	13 13 11	510 480 450 540	
437440 DUP Taiget Range - Lower Sound Upper Bound	0.003 0.002 <0.001 0.004	<0.2 <0.2 <0.2 <0.2 0.4	2 2 2	60 60 40 70	<2 <2 <2 <4	0.56 0.49 0.48 0.67	<1 <1 <1 2	48 44 41 41	214 199 190 223	13,30 11,85 11,60 13,65	0,95 0,86 0,83 0,98	1165 1080 1036 1210	<1 <1 <1	47 44 41 80	230 210 190 250	
437460 DUP Target Range - Lower Bound Upper Bound	0.002 0.001 <0.001 0.002	<0.2 <0.2 <0.2	3 3 2	80 70 60	<2 <2 <2 <4	0.03 0.03 0.02 0.04	<pre></pre> <pre><</pre>	20 27 25 31	65 61 67	9.81 9.41 8.88 10.35	0,04 0,04 0,03 0,05	765 708 875 796	1 1	28 25 24 29	250 240 220 270	
137048 OUP Terget Range - Lower Bound Upper Bound	0.001 <0.001 <0.001 0.002	<0.2 <0.2 <0.2	77 75 89	40 40 30 80	7 5	0.02 0.01 <0.01 0.02	<1 <1 <1 2	<1 <1 <1 <1 2	26 28 25 31	>20.0 >20.0 18.50 >20.0	0,02 0,02 <0.01 0,03	49 48 40 40 57	2 2 2 51	1 2	620 610 560 870	
437205 DUP Target Range - Lower Bound Upper Sound																

EXCELLENCE IN ANALYTICAL CHEMISTRYAustralian Laboratory Services Pty. Ltd.

32 Shand Street Stafford Brisbane QLD 4053 Shane: +61 (7) 3243 7222 Fax: +61 (7) 3243 7216

Total # Pages: 3 (A - B) Finalized Date: 18-MAR-2009

	Ph	one; +61 (7) 324	13 7222 Fax	+61 (7) 3243	7218 www.	alschemex.com	QC CERTIFICATE OF ANALYSIS OR09018269
Sample Description	Method Analyte Units LOR	ME-ICP43 Pb ppm 1	ME=ICP43 S % 0.01	ME-ICP43 8b ppm 2	ME-ICP43 Zn ppm 1	Fe-0G46 Fe % 0.01	
						DUPLICATES	
437352 DUP Target Range - Lower Bo Upper So	und	10 9 8	0.01 0.01 <0.01 0.02	<2 <2 <2 *	50 61 46 55		
437375 DUP Target Range - Lower Bot Upper Bot	und und	5 4 3	0.01 0.01 <0.01 0.02	<2 2 *2	37 39 34 42		
437391 DUP Target Range - Lower Bol Upper Bot	ind ind	<1 <1 <1	0.02 0.02 <0.01 0.03	42 42 42 4	113 116 105 124		
437414 DUP Target Range - Lower Bot Upper Bot	and and	1 1 81	0.01 <0.01 <0.01 0.02	42 42 43 4	42 39 38 48		
437440 DUP Target Rangs - Lower Sou Upper Bou	ind ind	<1 <1 <1 2	<0.01 0.01 <0.01 0.02	42 2 42	81 73 70 84		
437460 DUP Target Range - Lower Bou Upper Bou	ind	15 14 12	0.01 0.01 <0.01 0.02	<2 <2 <2 •2	13 10 10 13		
437048 DUP Target Range - Lower Sou Upper Sou	nd ind	13 13 11 15	0.02 0.02 <0,01 0.03	2 2 2	11 11 0		
437205 DUP Target Range - Lower Bou Upper Bou						25.4 26.3 28.2 28.5	